

Network-based Integration of Microbiome and Metabolomic Data

Banff, 17 July 2025

Jing Ma

The human microbiome

All of the microbes and their genome, mostly bacteria

- More microbial cells than our somatic cells
- More microbial genes than our human genome
- Compositions vary within a person and between individuals
- Highly dynamic yet robust
- Association with many diseases

Microbiome data

OTU	Species	Sample 1	Sample 2	Sample 3
1	E.coli	17	0	335
2	S.aurus	231	1180	45
3	unknown	30	0	0

Table 1: A typical microbiome contingency table

Features of microbiome data

high-dimensional

Microbiome data

OTU	Species	Sample 1	Sample 2	Sample 3
1	E.coli	17	0	335
2	S.aurus	231	1180	45
3	unknown	30	0	0

Table 1: A typical microbiome contingency table

Features of microbiome data

- high-dimensional
- ullet sparse: lots of zeros o filtering + pseudocount replacement

Microbiome data

OTU	Species	Sample 1	Sample 2	Sample 3
1	E.coli	17	0	335
2	S.aurus	231	1180	45
3	unknown	30	0	0

Table 1: A typical microbiome contingency table

Features of microbiome data

- high-dimensional
- sparse: lots of zeros \rightarrow filtering + pseudocount replacement
- ullet compositional: only relative abundances are meaningful o normalization

Metabolomics

Metabolomics is the study of small molecules, known as metabolites, within a biological system.

Metabolomics

Metabolomics is the study of small molecules, known as metabolites, within a biological system.

Metabolites are the building blocks, intermediates, or end products of metabolism.

Metabolomics

Metabolomics is the study of small molecules, known as metabolites, within a biological system.

Metabolites are the building blocks, intermediates, or end products of metabolism.

Figure 1: Glycolysis: energy is used to convert glucose to a 6 carbon form. Thereafter, energy is generated to create two molecules of pyruvate. Credit to Nature Education.

Metabolomic data

Compound	Sample 1	Sample 2	Sample 3
Glucose	42,062,493	46,507,270	48,849,105
Glutamic acid	1,027,679	1,317,161	2,527,070
Propionate	3,487	6,262	9,188

Table 2: Peak intensities of compounds across samples

Features of metabolomic data

high-dimensional

Metabolomic data

Compound	Sample 1	Sample 2	Sample 3
Glucose	42,062,493	46,507,270	48,849,105
Glutamic acid	1,027,679	1,317,161	2,527,070
Propionate	3,487	6,262	9,188

Table 2: Peak intensities of compounds across samples

Features of metabolomic data

- high-dimensional
- ullet sparse: lots of zeros o filtering + imputation

Metabolomic data

Compound	Sample 1	Sample 2	Sample 3
Glucose	42,062,493	46,507,270	48,849,105
Glutamic acid	1,027,679	1,317,161	2,527,070
Propionate	3,487	6,262	9,188

Table 2: Peak intensities of compounds across samples

Features of metabolomic data

- high-dimensional
- sparse: lots of zeros → filtering + imputation
- high variance \rightarrow log transformation

Microbial metabolites play an important role in host immune system.

Microbial metabolites play an important role in host immune system.

 SCFA: metabolites that are produced by bacteria from dietary components

Microbial metabolites play an important role in host immune system.

- SCFA: metabolites that are produced by bacteria from dietary components
- bile acids: metabolites that are produced by the host and biochemically modified by gut bacteria

Microbial metabolites play an important role in host immune system.

- SCFA: metabolites that are produced by bacteria from dietary components
- bile acids: metabolites that are produced by the host and biochemically modified by gut bacteria
- ATP: metabolites that are synthesized de novo by gut microbes

Detecting microbial metabolites

Knowledge gap:

- most of the bacterial metabolites remain unidentified.
- many known metabolites have yet to be functionally characterized.

¹Morton et al. 19'. Nat Methods; Reiman et al. 21'. PLOS Comp Bio

²Quinn-Bohmann et al. 25'. Nat Microbiol

Detecting microbial metabolites

Knowledge gap:

- most of the bacterial metabolites remain unidentified.
- many known metabolites have yet to be functionally characterized.

Current methods for learning microbial-metabolite interactions:

- correlation networks
- machine learning models¹
- mechanistic models²

¹Morton et al. 19'. Nat Methods; Reiman et al. 21'. PLOS Comp Bio

²Quinn-Bohmann et al. 25'. Nat Microbiol

Microbe-metabolite networks

Let $A \in \{0,1\}^{p_1 \times p_2}$ denote the latent network between p_1 microbes and p_2 metabolites.

In this bipartite network, the nodes are microbes/metabolites and the edges represent associations between microbes and metabolites.

Microbe-metabolite networks

Let $A \in \{0,1\}^{p_1 \times p_2}$ denote the latent network between p_1 microbes and p_2 metabolites.

In this bipartite network, the nodes are microbes/metabolites and the edges represent associations between microbes and metabolites.

Inference for A amounts to testing:

$$H_{0,i,j}: A_{i,j} = 0$$
 versus. $H_{1,i,j}: A_{i,j} \neq 0$,

for all $1 \le i \le p_1, 1 \le j \le p_2$.

False discovery rate

FDR provides a way of quantifying the statistical significance of multiple hypothesis tests.

	Not significant	Significant	Total
Null is true	N_{00}	N_{10}	m_0
Alternative is true	N ₀₁	N_{11}	m_1
Total	S	R	m

Table 3: Classification of tested hypothesis

$$\label{eq:fdr} \text{FDR} = \textit{E}(\frac{\textit{N}_{10}}{\textit{R} \vee 1}), \quad \text{mFDR} = \frac{\textit{E}(\textit{N}_{10})}{\textit{E}(\textit{R})}$$

FDR control

The Benjamini & Hochberg (BH) procedure³

- Choose a desired significance level $\alpha \in (0,1)$.
- Sort the p-values in increasing order: $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.
- Find the largest index k such that:

$$p_{(k)} \leq \frac{k}{m} \alpha$$

• Reject all hypotheses with p-values $p_i \leq p_{(k)}$.

³Benjamini & Hochberg. (95') JRSSB

Local false discovery rate

Let $X = (x_i) \in \mathbb{R}^{p_1 p_2}$ denote the observations (e.g., z-scores). Efron et al.⁴ studied the mixture model

$$f(x) = \pi_0 f_0(x) + \pi_1 f_1(x),$$

for multiple testing, where

- f_0 : null distribution (e.g., $\mathcal{N}(0,1)$)
- f₁: the alternative distribution
- $\pi_0, \pi_1 = 1 \pi_0$: prior probabilities

⁴Efron et al. (01') JASA

⁵Sun and Cai. (07') JASA

Local false discovery rate

Let $X = (x_i) \in \mathbb{R}^{p_1 p_2}$ denote the observations (e.g., z-scores). Efron et al.⁴ studied the mixture model

$$f(x) = \pi_0 f_0(x) + \pi_1 f_1(x),$$

for multiple testing, where

- f_0 : null distribution (e.g., $\mathcal{N}(0,1)$)
- f₁: the alternative distribution
- $\pi_0, \pi_1 = 1 \pi_0$: prior probabilities

The Empirical Bayes local false discovery rate⁵ is:

$$\mathsf{IFDR}(x) = \frac{\pi_0 f_0(x)}{f(x)}.$$

Reject hypotheses with IFDR(x) < α .

⁴Efron et al. (01') JASA

⁵Sun and Cai. (07') JASA

Incorporating structures

More power can be achieved by exploiting the local dependence structure, e.g., Hidden Markov models⁶.

Fig. 1. Comparison of BH (\bigcirc), AP (\triangle) and OR (+) in an HMM (the FDR level is set at 0.10): (a) FDR *versus* μ ; (b) FNR *versus* μ

⁶Sun and Cai (09') JRSSB

Knowledge gap

 Nearly all existing works on large scale multiple testing require vector inputs and are not optimized for matrix-valued observations.

⁷Cai and Liu (16') JASA

Knowledge gap

- Nearly all existing works on large scale multiple testing require vector inputs and are not optimized for matrix-valued observations.
- Methods for correlation testing exist⁷, but they do not take into account the structural information in the data.

⁷Cai and Liu (16') JASA

Knowledge gap

- Nearly all existing works on large scale multiple testing require vector inputs and are not optimized for matrix-valued observations.
- Methods for correlation testing exist⁷, but they do not take into account the structural information in the data.

Figure 2: Topology of interest: (a) three biclusters, (b) fully nested graph, and (c) preferential attachment.

⁷Cai and Liu (16') JASA

Latent graph model

Let $X=(x_{i,j})\in\mathbb{R}^{p_1\times p_2}$ denote the matrix-valued observations (e.g., z-scores).

Latent graph model

Let $X = (x_{i,j}) \in \mathbb{R}^{p_1 \times p_2}$ denote the matrix-valued observations (e.g., z-scores).

We model X using a latent bipartite stochastic block model (biSBM), defined with respect to row clustering $Z_1 = (Z_{i,1})$ and column clustering $Z_2 = (Z_{j,2})$. For $i = 1, \ldots, p_1$ and $j = 1, \ldots, p_2$:

$$Z_{i,1} \sim \mathsf{Multi}(1, \alpha_1),$$
 $Z_{j,2} \sim \mathsf{Multi}(1, \alpha_2),$ $A_{i,j} \mid Z_1, Z_2 \sim \mathsf{Bern}(\pi_{Z_{i,1}, Z_{j,2}}),$ $X_{i,j} \mid A_{i,j}, Z_1, Z_2 \sim A_{i,j} g_{\nu_{Z_{i,1}, Z_{j,2}}} + (1 - A_{i,j}) g_{0,\nu_0}.$ (1)

Model parameters are $\theta = (\alpha_1, \alpha_2, \pi, \nu, \nu_0)$.

Multiple testing procedure

Ideally, we need

$$P(A_{i,j} = 0 \mid X)$$

to control the IFDR. However, they are intractable in our context.

Multiple testing procedure

Ideally, we need

$$P(A_{i,j} = 0 \mid X)$$

to control the IFDR. However, they are intractable in our context.

Instead, we use the structured ℓ -value

$$P(A_{i,j} = 0 \mid X, Z_1, Z_2).$$

Reject the hypotheses if the ℓ -value is small, where the threshold is chosen to control mFDR.

Multiple testing procedure

Ideally, we need

$$P(A_{i,j}=0\mid X)$$

to control the IFDR. However, they are intractable in our context.

Instead, we use the structured ℓ -value

$$P(A_{i,j} = 0 \mid X, Z_1, Z_2).$$

Reject the hypotheses if the ℓ -value is small, where the threshold is chosen to control mFDR.

The *structured* ℓ *values* provide much more information than a single observation $x_{i,j}$ and will considerably help to make the final decision.

Identifiability

The *Gaussian* noisy biSBM is identifiable under the constraint that all elements of $\{(0, \sigma_0), (\mu_{q,l}, \sigma_{q,l}), 1 \le q \le B_1, 1 \le l \le B_2\}$ are distinct.

Identifiability

The *Gaussian* noisy biSBM is identifiable under the constraint that all elements of $\{(0, \sigma_0), (\mu_{q,l}, \sigma_{q,l}), 1 \le q \le B_1, 1 \le l \le B_2\}$ are distinct.

In general, the requirement of all elements being distinct is not necessary, as the model is also identifiable if there is a single alternative distribution such that $\sigma_{q,l} = \sigma$ and $\mu_{q,l} = \mu$.

Parameter estimation

Need to use the EM algorithm due to the latent variables A, Z_1, Z_2 . Let Q denote a probability distribution of the latent variables.

$$\log \mathcal{L}(X; \boldsymbol{\theta}) = \underbrace{E_{Q}[\log \mathcal{L}(X, A, Z_{1}, Z_{2}; \boldsymbol{\theta})] + \mathcal{H}(Q)}_{ELBO} + KL(Q \| P_{A, Z_{1}, Z_{2} | X; \boldsymbol{\theta}}),$$
(2)

- **1** Initialize $\theta^{(0)}$.
- **2** E-step: evaluate the expectation in (2) with respect to $Q = P_{A,Z_1,Z_2|X;\theta^{(t)}}$.
 - Mean-field approximation
- **3** M-step: update $\theta^{(t+1)}$ by maximizing the ELBO.
- 4 Iterate between E- and M-step until convergence.

Selecting the number of clusters

The numbers of blocks B_1 , B_2 are unknown.

Selecting the number of clusters

The numbers of blocks B_1 , B_2 are unknown.

We use the integrated classification likelihood (ICL) criterion to select the optimal B_1 and B_2 , allowing them to be different.

Simulations

Figure 3: Illustrations of the latent bipartite network used in simulations: (a) three biclusters, (b) fully nested graph, and (c) preferential attachment

- (a) Modular structures
- (b) Nested graph in ecology: generalist vs specialist
- (c) Preferential attachment: the rich gets richer

Simulation parameters

- $p_1 = 150, p_2 = 200$
- $\mathcal{N}(0,1)$ versus $\mathcal{N}(2,1)$
- Compare the average performance over 100 simulations
- Both the new and the SC procedures⁸ were implemented assuming known null density.

⁸Sun and Cai (07') JASA

Figure 4: Plot of the empirical (FDR, TDR) as a function of the nominal level α for the new procedure, BH, Storey's q-value, and the SC procedure. Dashed lines indicate the nominal level α .

Figure 4: Plot of the empirical (FDR, TDR) as a function of the nominal level α for the new procedure, BH, Storey's *q*-value, and the SC procedure. Dashed lines indicate the nominal level α .

(a) ICL selected a model with three biclusters correctly in 90% of the simulations.

Figure 4: Plot of the empirical (FDR, TDR) as a function of the nominal level α for the new procedure, BH, Storey's *q*-value, and the SC procedure. Dashed lines indicate the nominal level α

- (a) ICL selected a model with three biclusters correctly in 90% of the simulations.
- (b) ICL selected two biclusters in 83% of the simulations.

Figure 4: Plot of the empirical (FDR, TDR) as a function of the nominal level α for the new procedure, BH, Storey's *q*-value, and the SC procedure. Dashed lines indicate the nominal level α

- (a) ICL selected a model with three biclusters correctly in 90% of the simulations.
- (b) ICL selected two biclusters in 83% of the simulations.
- (c) ICL mostly found three clusters in type I vertex and one cluster in type II vertex.

Bacterial vaginosis

- BV is the most common vaginal condition, affecting an estimated 30% of women at any given time⁹.
- BV is associated with increased transmission of HIV and STIs as well as increased risk of preterm labour.
- Diagnosis relies on microscopy to identify BV-like bacteria by morphology alone (Nugent Scoring).
- The pathogenesis of BV remains unclear.

⁹McMillan et al. (15') Scientific Reports

• $Y_1 \in R^{n \times p_1}$: relative abundances from 49 genera obtained from 16S; centered log ratio transformed while keep zeros unchanged.

- $Y_1 \in R^{n \times p_1}$: relative abundances from 49 genera obtained from 16S; centered log ratio transformed while keep zeros unchanged.
- $Y_2 \in R^{n \times p_2}$: concentrations of 128 metabolites from GC-MS; log transformed

- Y₁ ∈ R^{n×p₁}: relative abundances from 49 genera obtained from 16S; centered log ratio transformed while keep zeros unchanged.
- $Y_2 \in R^{n \times p_2}$: concentrations of 128 metabolites from GC-MS; log transformed
- Outcome: normal (n = 79) vs BV (n = 45) status defined by nugent score

- Y₁ ∈ R^{n×p₁}: relative abundances from 49 genera obtained from 16S; centered log ratio transformed while keep zeros unchanged.
- $Y_2 \in R^{n \times p_2}$: concentrations of 128 metabolites from GC-MS; log transformed
- Outcome: normal (n = 79) vs BV (n = 45) status defined by nugent score
- Aim is to understand the microbial functional changes during BV.

Let \hat{Y}_1 and \hat{Y}_2 denote, respectively, the standardized data. The sample correlation is defined by

$$\hat{\rho}_{i,j} = \frac{1}{n} \sum_{k=1}^{n} \hat{Y}_{1,k,i} \hat{Y}_{2,k,j}.$$

¹⁰Cai and Liu (16') JASA

Let \hat{Y}_1 and \hat{Y}_2 denote, respectively, the standardized data. The sample correlation is defined by

$$\hat{\rho}_{i,j} = \frac{1}{n} \sum_{k=1}^{n} \hat{Y}_{1,k,i} \hat{Y}_{2,k,j}.$$

Let

$$s_{i,j} = \frac{1}{n} \sum_{i=1}^{n} (2 \hat{Y}_{1,k,i} \hat{Y}_{2,k,j} - \hat{\rho}_{k,i} \hat{Y}_{1,k,i} - \hat{\rho}_{k,i} \hat{Y}_{2,k,j})^{2}.$$

¹⁰Cai and Liu (16') JASA

Let \hat{Y}_1 and \hat{Y}_2 denote, respectively, the standardized data. The sample correlation is defined by

$$\hat{\rho}_{i,j} = \frac{1}{n} \sum_{k=1}^{n} \hat{Y}_{1,k,i} \hat{Y}_{2,k,j}.$$

Let

$$s_{i,j} = \frac{1}{n} \sum_{i=1}^{n} (2\hat{Y}_{1,k,i} \hat{Y}_{2,k,j} - \hat{\rho}_{k,i} \hat{Y}_{1,k,i} - \hat{\rho}_{k,i} \hat{Y}_{2,k,j})^{2}.$$

The test statistic

$$x_{i,j} = rac{2\hat{
ho}_{i,j}}{\sqrt{s_{i,j}/n}}
ightarrow \mathcal{N}(0,1),$$

under finite fourth moment condition¹⁰.

¹⁰Cai and Liu (16') JASA

Two-sample inference comparing BV to normal patients:

$$x_{i,j} = \frac{2(\hat{\rho}_{i,j}^{(1)} - \hat{\rho}_{i,j}^{(2)})}{\sqrt{s_{i,j}^{(1)}/n_1 + s_{i,j}^{(2)}/n_2}}$$

Figure 5: Histogram of observed *z*-scores compared to the standard normal and the estimated marginal distribution by the proposed approach.

Results

Figure 6: Percent of rejected edges as a function of the significance level α for the different procedures.

Results

The new procedure groups microbes and metabolites with similar association patterns into biclusters.

Figure 7: Heat map of the data (A) compared to the estimated graph by the proposed approach at $\alpha=0.1\%$ (B). Rows and columns are ordered by the inferred clustering.

Figure 8: A zoom in view of two biclusters with the largest mean difference.

- Top bicluster consists of Leptotrichia and Sneathia which are emerging pathogens implicated in BV. Association of these genera with metabolites is higher in BV patients.
- Bottom bicluster consists of Lactobacillus species, important for keeping a healthy vaginal microbiome. Association of these genera with metabolites is higher in normal individuals.
- Shed light on uncharacterized metabolites through "Guilt by Association".

Summary

metaMint

preprint: arXiv.2506.12275

Software: https://github.com/drjingma/metaMint

Future directions

Degree heterogeneity is not accounted for.

Computation: the method is slower than existing methods.
 Alternative model estimation and/or selection is helpful.

