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The human microbiome

All of the microbes and their gen-
ome, mostly bacteria • More microbial cells than our

somatic cells

• More microbial genes than
our human genome

• Compositions vary within a
person and between
individuals

• Highly dynamic yet robust

• Association with many
diseases
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Microbiome data

OTU Species Sample 1 Sample 2 Sample 3
1 E.coli 17 0 335
2 S.aurus 231 1180 45
3 unknown 30 0 0

· · · · · · · · · · · · · · ·

Table 1: A typical microbiome contingency table

Features of microbiome data

• high-dimensional

• sparse: lots of zeros → filtering + pseudocount replacement

• compositional: only relative abundances are meaningful →
normalization
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Metabolomics
Metabolomics is the study of small molecules, known as metabolites,
within a biological system.

Metabolites are the building blocks, intermediates, or end products of
metabolism.

Figure 1: Glycolysis: energy is used to convert glucose to a 6 carbon form. Thereafter,
energy is generated to create two molecules of pyruvate. Credit to Nature Education.
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Metabolomic data

Compound Sample 1 Sample 2 Sample 3
Glucose 42,062,493 46,507,270 48,849,105
Glutamic acid 1,027,679 1,317,161 2,527,070
Propionate 3,487 6,262 9,188
... ... ... ...

Table 2: Peak intensities of compounds across samples

Features of metabolomic data

• high-dimensional

• sparse: lots of zeros → filtering + imputation

• high variance → log transformation
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Microbial metabolites

Microbial metabolites play an important role in host immune system.

• SCFA: metabolites that are produced by bacteria from dietary
components

• bile acids: metabolites that are produced by the host and
biochemically modified by gut bacteria

• ATP: metabolites that are synthesized de novo by gut microbes
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Detecting microbial metabolites

Knowledge gap:

• most of the bacterial metabolites remain unidentified.

• many known metabolites have yet to be functionally characterized.

Current methods for learning microbial–metabolite interactions:

• correlation networks

• machine learning models1

• mechanistic models2

1Morton et al. 19’. Nat Methods; Reiman et al. 21’. PLOS Comp Bio
2Quinn-Bohmann et al. 25’. Nat Microbiol
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Microbe–metabolite networks

Let A ∈ {0, 1}p1×p2 denote the latent network between p1 microbes and
p2 metabolites.

In this bipartite network, the nodes are microbes/metabolites and the
edges represent associations between microbes and metabolites.

Inference for A amounts to testing:

H0,i,j : Ai,j = 0 versus. H1,i,j : Ai,j ̸= 0,

for all 1 ≤ i ≤ p1, 1 ≤ j ≤ p2.
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False discovery rate

FDR provides a way of quantifying the statistical significance of multiple
hypothesis tests.

Not significant Significant Total
Null is true N00 N10 m0

Alternative is true N01 N11 m1

Total S R m

Table 3: Classification of tested hypothesis

FDR = E (
N10

R ∨ 1
), mFDR =

E (N10)

E (R)
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FDR control

The Benjamini & Hochberg (BH) procedure3

• Choose a desired significance level α ∈ (0, 1).

• Sort the p-values in increasing order: p(1) ≤ p(2) ≤ · · · ≤ p(m).

• Find the largest index k such that:

p(k) ≤
k

m
α

• Reject all hypotheses with p-values pi ≤ p(k).

3Benjamini & Hochberg. (95’) JRSSB
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Local false discovery rate

Let X = (xi ) ∈ Rp1p2 denote the observations (e.g., z-scores). Efron et
al.4 studied the mixture model

f (x) = π0f0(x) + π1f1(x),

for multiple testing, where

• f0: null distribution (e.g., N (0, 1))

• f1: the alternative distribution

• π0, π1 = 1− π0: prior probabilities

The Empirical Bayes local false discovery rate5 is:

lFDR(x) =
π0f0(x)

f (x)
.

Reject hypotheses with lFDR(x) < α.

4Efron et al. (01’) JASA
5Sun and Cai. (07’) JASA
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Incorporating structures

More power can be achieved by exploiting the local dependence
structure, e.g., Hidden Markov models6.

6Sun and Cai (09’) JRSSB
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Knowledge gap

• Nearly all existing works on large scale multiple testing require
vector inputs and are not optimized for matrix-valued observations.

• Methods for correlation testing exist7, but they do not take into
account the structural information in the data.

Figure 2: Topology of interest: (a) three biclusters, (b) fully nested graph, and (c)
preferential attachment.

7Cai and Liu (16’) JASA
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Latent graph model

Let X = (xi,j) ∈ Rp1×p2 denote the matrix-valued observations (e.g.,
z-scores).

We model X using a latent bipartite stochastic block model (biSBM),
defined with respect to row clustering Z1 = (Zi,1) and column clustering
Z2 = (Zj,2). For i = 1, . . . , p1 and j = 1, . . . , p2:

Zi,1 ∼ Multi(1,α1),

Zj,2 ∼ Multi(1,α2),

Ai,j | Z1,Z2 ∼ Bern(πZi,1,Zj,2),

xi,j | Ai,j ,Z1,Z2 ∼ Ai,jgνZi,1,Zj,2
+ (1− Ai,j)g0,ν0 .

(1)

Model parameters are θ = (α1,α2,π,ν,ν0).
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Multiple testing procedure

Ideally, we need
P(Ai,j = 0 | X )

to control the lFDR. However, they are intractable in our context.

Instead, we use the structured ℓ-value

P(Ai,j = 0 | X ,Z1,Z2).

Reject the hypotheses if the ℓ-value is small, where the threshold is
chosen to control mFDR.

The structured ℓ values provide much more information than a single
observation xi,j and will considerably help to make the final decision.

15 / 29



Multiple testing procedure

Ideally, we need
P(Ai,j = 0 | X )

to control the lFDR. However, they are intractable in our context.

Instead, we use the structured ℓ-value

P(Ai,j = 0 | X ,Z1,Z2).

Reject the hypotheses if the ℓ-value is small, where the threshold is
chosen to control mFDR.

The structured ℓ values provide much more information than a single
observation xi,j and will considerably help to make the final decision.

15 / 29



Multiple testing procedure

Ideally, we need
P(Ai,j = 0 | X )

to control the lFDR. However, they are intractable in our context.

Instead, we use the structured ℓ-value

P(Ai,j = 0 | X ,Z1,Z2).

Reject the hypotheses if the ℓ-value is small, where the threshold is
chosen to control mFDR.

The structured ℓ values provide much more information than a single
observation xi,j and will considerably help to make the final decision.

15 / 29



Identifiability

The Gaussian noisy biSBM is identifiable under the constraint that all
elements of {(0, σ0), (µq,l , σq,l), 1 ≤ q ≤ B1, 1 ≤ l ≤ B2} are distinct.

In general, the requirement of all elements being distinct is not necessary,
as the model is also identifiable if there is a single alternative distribution
such that σq,l = σ and µq,l = µ.
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Parameter estimation

Need to use the EM algorithm due to the latent variables A,Z1,Z2. Let
Q denote a probability distribution of the latent variables.

logL(X ;θ) = EQ [logL(X ,A,Z1,Z2;θ)] +H(Q)︸ ︷︷ ︸
ELBO

+KL(Q∥PA,Z1,Z2|X ;θ),

(2)

1 Initialize θ(0).

2 E-step: evaluate the expectation in (2) with respect to
Q = PA,Z1,Z2|X ;θ(t) .

• Mean-field approximation

3 M-step: update θ(t+1) by maximizing the ELBO.

4 Iterate between E- and M-step until convergence.
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Selecting the number of clusters

The numbers of blocks B1,B2 are unknown.

We use the integrated classification likelihood (ICL) criterion to select
the optimal B1 and B2, allowing them to be different.
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Simulations

Figure 3: Illustrations of the latent bipartite network used in simulations: (a) three
biclusters, (b) fully nested graph, and (c) preferential attachment

(a) Modular structures

(b) Nested graph in ecology: generalist vs specialist

(c) Preferential attachment: the rich gets richer
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Simulation parameters

• p1 = 150, p2 = 200

• N (0, 1) versus N (2, 1)

• Compare the average performance over 100 simulations

• Both the new and the SC procedures8 were implemented assuming
known null density.

8Sun and Cai (07’) JASA
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Simulation results

Figure 4: Plot of the empirical (FDR,TDR) as a function of the nominal level α for
the new procedure, BH, Storey’s q-value, and the SC procedure. Dashed lines indicate

the nominal level α.

(a) ICL selected a model with three biclusters correctly in 90% of the
simulations.

(b) ICL selected two biclusters in 83% of the simulations.

(c) ICL mostly found three clusters in type I vertex and one cluster in
type II vertex.

21 / 29



Simulation results

Figure 4: Plot of the empirical (FDR,TDR) as a function of the nominal level α for
the new procedure, BH, Storey’s q-value, and the SC procedure. Dashed lines indicate

the nominal level α.

(a) ICL selected a model with three biclusters correctly in 90% of the
simulations.

(b) ICL selected two biclusters in 83% of the simulations.

(c) ICL mostly found three clusters in type I vertex and one cluster in
type II vertex.

21 / 29



Simulation results

Figure 4: Plot of the empirical (FDR,TDR) as a function of the nominal level α for
the new procedure, BH, Storey’s q-value, and the SC procedure. Dashed lines indicate

the nominal level α.

(a) ICL selected a model with three biclusters correctly in 90% of the
simulations.

(b) ICL selected two biclusters in 83% of the simulations.

(c) ICL mostly found three clusters in type I vertex and one cluster in
type II vertex.

21 / 29



Simulation results

Figure 4: Plot of the empirical (FDR,TDR) as a function of the nominal level α for
the new procedure, BH, Storey’s q-value, and the SC procedure. Dashed lines indicate

the nominal level α.

(a) ICL selected a model with three biclusters correctly in 90% of the
simulations.

(b) ICL selected two biclusters in 83% of the simulations.

(c) ICL mostly found three clusters in type I vertex and one cluster in
type II vertex.

21 / 29



Bacterial vaginosis

• BV is the most common vaginal condition, affecting an estimated
30% of women at any given time9.

• BV is associated with increased transmission of HIV and STIs as
well as increased risk of preterm labour.

• Diagnosis relies on microscopy to identify BV-like bacteria by
morphology alone (Nugent Scoring).

• The pathogenesis of BV remains unclear.

9McMillan et al. (15’) Scientific Reports
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Data

• Y1 ∈ Rn×p1 : relative abundances from 49 genera obtained from 16S;
centered log ratio transformed while keep zeros unchanged.

• Y2 ∈ Rn×p2 : concentrations of 128 metabolites from GC-MS; log
transformed

• Outcome: normal (n = 79) vs BV (n = 45) status defined by nugent
score

• Aim is to understand the microbial functional changes during BV.

23 / 29



Data

• Y1 ∈ Rn×p1 : relative abundances from 49 genera obtained from 16S;
centered log ratio transformed while keep zeros unchanged.

• Y2 ∈ Rn×p2 : concentrations of 128 metabolites from GC-MS; log
transformed

• Outcome: normal (n = 79) vs BV (n = 45) status defined by nugent
score

• Aim is to understand the microbial functional changes during BV.

23 / 29



Data

• Y1 ∈ Rn×p1 : relative abundances from 49 genera obtained from 16S;
centered log ratio transformed while keep zeros unchanged.

• Y2 ∈ Rn×p2 : concentrations of 128 metabolites from GC-MS; log
transformed

• Outcome: normal (n = 79) vs BV (n = 45) status defined by nugent
score

• Aim is to understand the microbial functional changes during BV.

23 / 29



Data

• Y1 ∈ Rn×p1 : relative abundances from 49 genera obtained from 16S;
centered log ratio transformed while keep zeros unchanged.

• Y2 ∈ Rn×p2 : concentrations of 128 metabolites from GC-MS; log
transformed

• Outcome: normal (n = 79) vs BV (n = 45) status defined by nugent
score

• Aim is to understand the microbial functional changes during BV.

23 / 29



Test statistics

Let Ŷ1 and Ŷ2 denote, respectively, the standardized data. The sample
correlation is defined by

ρ̂i,j =
1

n

n∑
k=1

Ŷ1,k,i Ŷ2,k,j .

Let

si,j =
1

n

n∑
i=1

(2Ŷ1,k,i Ŷ2,k,j − ρ̂k,i Ŷ1,k,i − ρ̂k,i Ŷ2,k,j)
2.

The test statistic

xi,j =
2ρ̂i,j√
si,j/n

→ N (0, 1),

under finite fourth moment condition10.

10Cai and Liu (16’) JASA
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Let Ŷ1 and Ŷ2 denote, respectively, the standardized data. The sample
correlation is defined by

ρ̂i,j =
1

n

n∑
k=1
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Test statistics
Two-sample inference comparing BV to normal patients:

xi,j =
2(ρ̂

(1)
i,j − ρ̂

(2)
i,j )√

s
(1)
i,j /n1 + s

(2)
i,j /n2

Figure 5: Histogram of observed z-scores compared to the standard normal and the
estimated marginal distribution by the proposed approach.
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Results

Figure 6: Percent of rejected edges as a function of the significance level α for the
different procedures.
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Results

The new procedure groups microbes and metabolites with similar
association patterns into biclusters.

Figure 7: Heat map of the data (A) compared to the estimated graph by the proposed
approach at α = 0.1% (B). Rows and columns are ordered by the inferred clustering.
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Results

Figure 8: A zoom in view of two biclusters with the largest mean difference.

• Top bicluster consists of Leptotrichia and Sneathia which are emerging
pathogens implicated in BV. Association of these genera with metabolites
is higher in BV patients.

• Bottom bicluster consists of Lactobacillus species, important for keeping a
healthy vaginal microbiome. Association of these genera with metabolites
is higher in normal individuals.

• Shed light on uncharacterized metabolites through “Guilt by Association”.
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Summary

metaMint

• preprint: arXiv.2506.12275

• Software: https://github.com/drjingma/metaMint

Future directions

• Degree heterogeneity is not accounted for.

• Computation: the method is slower than existing methods.
Alternative model estimation and/or selection is helpful.
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