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My Journey

You can read more about my story here.
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My Journey

• My thesis: graphical models, high-dimensional data analysis
• My postdoctoral training: graphical models for microbiome data,

high-dimensional data analysis
• Now: statistics in microbiome, neuroscience, and aging
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My Job

Fred Hutch is an independent, nonprofit organization, that also serves as
UW Medicine’s cancer program.

Research Institutes
• Independent research
• Collaborative research
• Mentoring students

Universities
• Independent research
• Collaborative research
• Mentoring students
• Teaching
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What We Do
We develop statistical methods to study the human microbiome.

Figure 1: Composition of the human microbiome varies by body sites. They play
important roles in human health and have been associated with many diseases. Most

of the microbes are bacteria and live in human gut.
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What We Do

Preprocessing
(Bioinformatics)

Community-
level Analysis

Visualization Feature
Selection Network Analysis Integration
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Microbiome and Cancer Treatment
• Allogeneic Hematopoietic-Cell Transplantation (allo-HCT) is a

curative therapy for hematologic cancers, but complications such as
graft-versus-host disease (GVHD) remain a major cause of illness
and death.

• Lower diversity predicts poor overall survival1.

• Interventions to restore integrity to the intestinal microbiota?

1Peled et al., NEJM. 20’
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Scientific Question

Which bacterial species are associated with poor outcome (e.g., GVHD
status)?
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Microbiome Data

Sample1 Sample2 Sample3
ASV1 17 0 335
ASV2 231 1180 45
ASV3 30 0 0
· · · · · · · · · · · ·
Age 25 48 65

Disease yes no yes
Table 1: A typical microbiome contingency table

Analytical challenges

• high-dimensional: # of taxa > # of samples
• structured: taxa and/or samples are correlated
• etc.
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Univariate Feature Selection

Perform univariate test of each species with respect to an outcome

Outcome Bacteria
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Univariate Feature Selection

Output:
• p-value for testing each bacterial species (after correcting for

multiple comparisons)

Options
• different normalization methods
• different noise models for bacterial abundances (e.g., zero-inflated

log normal2, beta-binomial3, zero-inflated quantile regression4, etc.)

2Paulson et al. Nat Meth. 13’
3Martin et al. AoAS. 20’
4Ling et al. Microbiome. 21’
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Application to Yatsunenko 12’
Which bacteria are associated with age?

• n = 100
• p = 149
• Apply univariate Spearman rank

correlation test between log
transformed abundance and age

/ Which bacteria should I target?
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Two Possible Explanations

1 Many bacteria are directly associated with age
Bacteria1

Bacteria2

Age
direct

direct

2 Bacteria are correlated and only a few
bacteria are directly associated with age

Bacteria1 Bacteria2 Ageindirect direct
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Conditional Associations

Bacteria1 Bacteria2 Ageindirect direct

Figure 2: Conditional on Bacteria 2, Bacteria 1 is independent of Age.

Multiple linear regression

yi = Xi,1β1 + . . . + Xi,pβp + errori ,

• Coefficients βj : conditional association between bacteria j and y
• When p ≪ n, inference for β is straightforward by large sample

theory.
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Curse of Dimensionality

y ≈ X · β

?

?

?

?

?

?

If the number of unknown parameters exceeds the sample size, we have
identifiability issue!
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Curse of Dimensionality

y ≈ X · β

0

?

?

0

0

0

We can solve this problem if an oracle tells us that only a small number
of coefficients are nonzero!

In reality, we do not know which coefficients are nonzero, nor do we know
if the coefficients are sparse!
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Use Prior to Improve Power

Figure 3: A simple phylogenetic tree

Bacteria closer on the tree are more similar in their DNA content and
have similar effects on the outcome (a reasonable assumption).
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Use Prior to Improve Power

y ≈ X · β

Assume coefficients are smooth with respect to the prior!
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Are Observations Independent?
Most methods assume the observations are independent and identically
distributed. Is this assumption valid?

Figure 4: Correlation among (A) Yatsunenko samples; (B) independent samples

In Yatsunenko 12’, subjects include individuals from the same household
(twins, parent-offspring relationships).
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Observations are Correlated

If a treatment works in a person’s microbiome, it is more likely to work in
the microbiome of their twin siblings.

It is unfair to count good outcomes in both individuals as 2 independent
pieces of evidence for the treatment’s effectiveness.

Doing so artificially increases the sample size, decreases the P values, and
potentially results in effects being deemed significant when they should
not be (a type I error).
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Accounting for Correlated Observations

If an oracle tells us the correlation among observations, we can use this
knowledge to de-correlate the observations. This is called generalized
least squares.

In the absence of this oracle, we can derive a prior on sample correlation
from auxiliary data.
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Accounting for Correlated Observations

Figure 5: Sample correlation in Yatsunenko 12’ from (A) 16S abundance and (B)
metagenomic pathway abundance
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GMDR

Generalized Matrix Decomposition Regression

yi = Xi,1β1 + . . . + Xi,pβp + errori ,

Yue Wang
subject to the constraints that

• the coefficients β are smooth with respect to a variable similarity
network Q

• the error covariance is smooth with respect to a sample similarity
network H
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Prior Misspecification

Our prior may be biased/incomplete!

We propose robust GMDR:

1 Test the association between given prior and observed correlations
using the Kernel RV (KRV) coefficient. KRV rejects the null →
prior is at least partially informative.

2 For partially informative prior, use a likelihood criterion to weight
the prior against an uninformative baseline.
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Revisit Yatsunenko 12’

Which bacteria are associated with age?

• n = 100
• p = 149
• FDR = 0.1
• Results from robust

GMDI.

GMDI-1: discrete shrinkage; GMDI-2: continuous shrinkage
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Visualization

Figure 6: Dialister and Veillonella are phylogenetically close.

• Dialister has been shown to play a role in age-related diseases, such
as obesity and diabetes5.

• Veillonella is a signature of infant (4-month old) microbiome and
breast feeding6.

5Xu et al., 20’; Gurung et al., 20’
6Backhed et al., 15’
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Current Opportunities

Network biology
• microbial networks: can we improve power by modeling the latent

network structure?

• disease association networks: how do disease co-occurrences vary
with age? how to integrate data from epidemiological surveys with
electronic medical records?

Microbiome
• gut-brain association: how to define the association and perform

valid inference?
• microbiome and cancer: what features of the microbiome are

correlated with cancer diagnosis and treatment?
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