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» Nodes: genes

» Edges: protein — DNA
and protein — protein

» Genes form functional
modules

Fig: Integrated physical interaction network in yeast
Saccharomyces cerevisiae®.

2|deker et al. Science. 01’
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Scientific Question: to identify associations of genotypes with phenotypes.
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Fig: Steps of a GWAS experiment®.
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Genome-wide Association

Statistical model

y=Wa+ XsBs+~v+e
v~ N(0,2K)
e ~ N(0,021)

This is a linear mixed model where
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Statistical model
y=Wa+ XsBs+~v+e
v~ N(0,2K)
e ~ N(0,0%1)
This is a linear mixed model where
> y:an n x 1 vector of quantitative traits (e.g., red blood cell count)
» W: a matrix of covariates (e.g. age, sex, ancestry)
» Xs: an n x 1 vector of genotype values at SNP s
> [s: the strength of association between SNP s and y
» ~: a random effect that captures the polygenic effect of other SNPs

» K: n x nkinship matrix
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Input data: (W, X, y, K)

Association testing
Ho N BS =0

Heritability estimation

02 + 02
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y = Wa+ Xs8s + u,
where u ~ N(0,02V)and V = K + 02/02 .
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where u ~ N(0,02V)and V = K + 02/02 .
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y=Wa+ Xsf3s + u,
where u ~ N(0,02V)and V = K + 02/02 .
Generalized least squares
«

[ﬂ] =XV X)XV 'y

Both analysis tasks require estimating the variance components!
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Let Z € {0,1,2}"*9 denote the remaining g SNPs (i.e. excluding X;).
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Let Z € {0,1,2}"*9 denote the remaining g SNPs (i.e. excluding X;).
Consider the model
y=Wa+ XsBs+2Z7 +¢

The coefficient j3; is the effect of SNP s on y after adjusting the effects
introduced by other SNPs Z.

Fitting the model
T~ N(©0,0%), j=1.....q

Averaging over the distribution of 7;’s, we obtain

¥ ~ N(Wa + Xsfs,052Z" + 621)
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Let Z € {0,1,2}"*9 denote the remaining g SNPs (i.e. excluding X;).
Consider the model
y=Wa+ XsBs+2Z7 +¢

The coefficient j3; is the effect of SNP s on y after adjusting the effects
introduced by other SNPs Z.

Fitting the model
71~ N(0,62), j=1,...,q9

Averaging over the distribution of 7;’s, we obtain
¥ ~ N(Wa + Xsfs,052Z" + 621)

The kinship K = ZZ" is a natural choice.
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Maximum likelihood (null)

1 1 Ty -
max  {—5 loglof V| - 50, %(y - Wa) V™ '(y - Wa)}

2 UE/U%

o5
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Restricted maximum likelihood (REML)

,max_{likelihood of L'y}
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where LW = 0 and L™ has full row rank.
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® REML estimator has the smallest variance among all estimators

® REML is computationally expensive: need to invert n x n matrices where
n > 100K in large studies
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Maximum likelihood (null)

1 1 _ Ty — ~
max | {5 loglo? V| — Soi*(y - Wa) V™' (y - Wa)}

o5,

Restricted maximum likelihood (REML)
,max_{likelihood of L'y}

JW’UE/J’Y

where L"W = 0 and L has full row rank.
® REML estimator has the smallest variance among all estimators

® REML is computationally expensive: need to invert n x n matrices where
n > 100K in large studies

Need alternatives that can balance statistical and computational efficiency.
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y=v+e
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Method of Moments

Assume no fixed effects for the moment. The model is
y=7+e
The second moment of y is

E(yy") =02 K + o2l
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Method of Moments

Assume no fixed effects for the moment. The model is
y=7+e
The second moment of y is

E(yy") =02 K + o2l

yy" is a linear function of K and /5!

PA 15
'f/;‘
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Let vec(K) denote the vectorization of K by stacking its columns. Let n* = n?
and
Y =vec(yy") e R", X = [vec(lh),vec(K)] € R" *2,

“Haseman and Elston. Behavior Genetics. '72; Sofer T. Stat. Appl. Genet. Mol. Biol. '17
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and
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Let vec(K) denote the vectorization of K by stacking its columns. Let n* = n?
and
Y =vec(yy") e R", X = [vec(lh),vec(K)] € R" *2,

HE regression* solves for o by minimizing

%(? — XaA)'(Y - Xo?)

® The HE estimator is unbiased.
© HE is computationally efficient: O(dn?) as opposed to O(n®) for REML

® May get negative estimates: truncation to zero?

“Haseman and Elston. Behavior Genetics. '72; Sofer T. Stat. Appl. Genet. Mol. Biol. '17
12/47



Restricted HE Regression

CURES START HERE™

44" FRED HUTCH
,,é/;/. F uTC

® Avoid negative estimates by non-negative least squares (NNLS)
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subject to o > 0

13/47



Restricted HE Regression

CURES START HERE™

<JIe.
'f.l‘ FRED HUTCH

® Avoid negative estimates by non-negative least squares (NNLS)

REHE solves for the variance components by minimizing

1

1 5 Y 2\T/v v .2\ 2\TyTy 2 PANEVIRY,
F(\/4(0)(focr)_ﬁ{(a)xxo— 72(0')XY},

subject to o > 0

® Global minimizer is guaranteed due to convexity.
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REHE solves for the variance components by minimizing

1

1 ~ =~ ~ o~ - ~
—(Y=X*) (Y = Xo*) = — {(UZ)TXTXUZ - 2(02)TXTY} ,

subject to o2 > 0.

® Global minimizer is guaranteed due to convexity.

® Computational cost of REHE is comparable to HE, both faster than REML.
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® Avoid negative estimates by non-negative least squares (NNLS)
REHE solves for the variance components by minimizing

1

1 ~ =~ ~ o~ - ~
—(Y=X*) (Y = Xo*) = — {(UZ)TXTXUZ - 2(02)TXTY} ,

subject to o2 > 0.
® Global minimizer is guaranteed due to convexity.

® Computational cost of REHE is comparable to HE, both faster than REML.

® May get zero estimates
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We can approximate these inner products by subsampling rows of Xand Y.
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We can approximate these inner products by subsampling rows of Xand Y.
REHE with Resampling (reREHE)
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We can approximate these inner products by subsampling rows of Xand Y.
REHE with Resampling (reREHE)

~2  _ 1B =2(b)
T5re = B Dbt Orre
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®© reREHE estimates are strictly positive and can be faster to compute.
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Suppose we have covariates. The null model

y=Wa+~vy+e

5K can be replaced by K when nis large.
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Suppose we have covariates. The null model
y=Wa+~vy+e

Let P+ = I, — W(WTW)~" W' denote the projection matrix onto the
orthogonal complement of the column space of W. Let

y' =Py, At =Py, =Pl

5K can be replaced by K when nis large.
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Suppose we have covariates. The null model
y=Wa+~vy+e

Let P+ = I, — W(WTW)~" W' denote the projection matrix onto the
orthogonal complement of the column space of W. Let

y' =Py, At=Phy =P
We obtain a new model with no covariates
yh=q"+e, 4T~ N(0,02K)

where Kt = PLKP+3,

5K can be replaced by K when nis large.
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Constructing Confidence Intervals

Parametric Bootstrap
> Compute REHE estimates 52, 52 based on Y, K, n;
» Forb=1to B

> Generate response vector Y*® from A (0,52 K + 521,);
» Compute REHE estimates 52°, 52°), based on Y*® K I,;

8Can also construct quantile confidence interval
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Parametric Bootstrap
> Compute REHE estimates 52, 52 based on Y, K, n;

> Forb=1t0 B
> Generate response vector Y*®) from N (0,52K + &21,);
» Compute REHE estimates 52°, 52°), based on Y*® K I,;

Wald-type confidence interval®
[53, — Zy)2 X S.€. (&i(b)) 5o+ Zosa X S.€. (55“’))} :

where z,, , is the (1 — a/2)-th percentile of the standard normal distribution.

8Can also construct quantile confidence interval
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v

y: red blood cell count

v

X: 4,100,028 SNPs

» Covariates W': age, sex, cigarette use, field center indicator, genetic
subgroup indicator, ancestry, sampling weights

v

Variance components: genetic relatedness, membership of household,
and membership of community group
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subgroup indicator, ancestry, sampling weights

» Variance components: genetic relatedness, membership of household,
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» Bonferroni correction for multiple testing
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» n = 12,502 after removing observations with missing values
> y: red blood cell count

> X:4,100,028 SNPs

» Covariates W': age, sex, cigarette use, field center indicator, genetic
subgroup indicator, ancestry, sampling weights

» Variance components: genetic relatedness, membership of household,
and membership of community group

» Bonferroni correction for multiple testing

» REHE took 2.4 min for estimation and 18 min for inference; REML 23.9
min
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Synthetic data were generated from
Y = obln+ 0% Ki,
where Kj is a submatrix of the genetic relatedness matrix from HCHS/SOL.
» ne {3,000,86,000,9,000, 12,000}

> (o8, o) € {(0.1, 0.1), (0.01, 0.1)}

23% HE estimates were negative before truncation at zero
(n= 3000, 05 = 0.01).
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Gene Set: a set of all SNPs located near a list of related genes.

Scientific Question: whether a gene set is associated with a trait.

Motivation: many biological processes are driven by mechanisms involving
more than one SNP

® Easy interpretation
® Fewer number of gene sets compared to number of genes/SNPs

® More power by pooling many weaker signals
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Input Methods Output

GSEA

= SPIA = | List of significant pathway

Pathway Database DEGraph

NetGSA

Lk

Pathway Database
KEGG, MSigDB, BioCarta, Reactome, MetaCyc, etc.
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Motivation: genes are not independent

Most existing methods rely on curated interactions from pathway databases.
® Curated networks can be incomplete and/or inaccurate
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Motivation: genes are not independent

Most existing methods rely on curated interactions from pathway databases.
® Curated networks can be incomplete and/or inaccurate

® Curated networks lack condition/disease-specific alterations in interactions
Which null hypothesis?

» The genes in a given pathway are at most as differentially expressed as
those outside the pathway (camera, PathNet).

» The observed number of DE genes is just by chance and the DE genes
are randomly located in the pathway (SPIA, Pathway-Express)

» Self-contained null (NetGSA, DEGraph and topologyGSA)
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A © () @ O—) ° |:> 23 |:> P value=0.22
& ® ()
-
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Condition 1 Condition 2 Data
Q ©® &) ® o NetGSA

A 00 or® o “ > Pualue=0.22
@B 0O -

20

Nodes 2, 4, 6, 7 have larger changes in mean in case B than in case A.

|:> P value=0.08

22998 9 %
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Condition 1 Condition 2 Data

@ & ) ® o NetGSA
A |::> fl |::> P value=0.22
@B 0O -
Q® @
e -
e OO

Node 1 as opposed to node 2 has change in mean in case C.

|:> P value=0.03

22998 9 %
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Condition 1 Condition 2 Data

Q ©® &) ® o NetGSA
A 00 or® o “ > Pualue=0.22
@B 0O -
Qe &
b 0o o
20
® o O

There is an additional change in correlation between nodes 4 and 6 in case D.

|:> P value=0.09

22998 9 %
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Condition 1 Condition 2 Data
Q ©® &) ® o NetGSA

A 00 or® o “ > Pualue=0.22
@B 0O -

28 .

There is an additional change in correlation between nodes 1 and 4 in case E.

|:> P value=0.04

22998 9 %
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» Change in mean values of genes in the set
» Position of genes: hub genes are more important

» Change in gene-gene interaction
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» Change in mean values of genes in the set
» Position of genes: hub genes are more important

» Change in gene-gene interaction

NetGSA captures all three factors!
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Let Y € R” denote the expression values of p genes from an arbitrary
sample. Suppose Y = X + ¢, where X is signal and ¢ is noise.

7Shojaie and Michailidis. JCB. '09
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NetGSA Model 44 FRED HUTCH
(7
Let Y € R” denote the expression values of p genes from an arbitrary
sample. Suppose Y = X + ¢, where X is signal and ¢ is noise.

Assume the p genes are related via a network A = (a;) where a; denotes the
strength of association between genes i and j.

a

We model X via the latent variable model”

Xi=m
Xo = anpXi + 12
X3 = a3 Xo + 3 = @12823771 + @372 + 73

where v; ~ N(y;, 02) represents the baseline expression of gene j.

7Shojaie and Michailidis. JCB. '09
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Y=M+e v~N(posih), e~N(0,0ih)

1 0 O
A= aiz 1 0
Q12823 a3 1

is the influence matrix of the gene network A = (I, — A)~".

where
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Statistical Inference
Givendata Y; (i =1,...,n) and network A, test for a gene set G
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Y=M+e v~N(posih), e~N(0,0ih)

1 0 O
A= aiz 1 0
Q12823 a3 1

is the influence matrix of the gene network A = (I, — A)~".

where

Statistical Inference
Givendata Y; (i =1,...,n) and network A, test for a gene set G

1 2
Hp : ,u(G) = ,u(G)

or
H(f)wf . (/\(1)I~L(1))G — (/\(Z)M(z))G
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8Ma et al. Bioinformatics. '16
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A can be directed acyclic or undirected.
A'is weighted.

NetGSA infers the weights from data (independent from Y) using graphical
models.

8Ma et al. Bioinformatics. '16
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A can be directed acyclic or undirected.

A'is weighted.

NetGSA infers the weights from data ( ) using graphical
models.

©® Many RNA-seq data are available

® Can use curated networks as side information to improve data-driven
network inference®

8Ma et al. Bioinformatics. '16
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1t 2 3 4 5 6
.7 1 0 7 0y
? . 7 7 0 7o
a |l 1?2 - 7 0 0 |s
0 ? 2 7 01 |
7?00 ? - 7 |s
0o ? 0 1 ? 6

» 0: there is no interaction; 1: there is interaction; ?: unknown
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» Given data, we use graphical models to incorporate existing information
using a constrained optimization framework.
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1t 2 3 4 5 6
.7 1 0 7 0y
? . 7 7 0 7o
a |l 1?2 - 7 0 0 |s
0 ? 2 7 01 |
7?00 ? - 7 |s
0o ? 0 1 ? 6

» 0: there is no interaction; 1: there is interaction; ?: unknown

» Given data, we use graphical models to incorporate existing information
using a constrained optimization framework.

» Can estimate novel interactions and validate existing information.

» Consistent estimation of network requires fewer observations,
depending on the available external information.
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Large Networks

SHellstern et al. PLoS Comp Bio. ‘21
36 /47



Large Networks ,;’ﬁ',, FRED HUTCH
(] ." CURES START HERE™

Partition large networks into smaller ones by estimating a block diagonal
network.

06
0.4

0.2

1

This strategy improves computational speed with little loss in performance®.

SHellstern et al. PLoS Comp Bio. ‘21
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Pathway memberships may be unknown.

OMa et al. Bioinformatics. '19
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Pathway memberships may be unknown.

_s« tage
1
HI\ ] |2 Stage

- Nonprogressors
[
! \‘ % I Progressors =
l | |53 . c

iy U | amne
7 /| 11 | 3 sorc
El I Jilinh ) nore

i B plasmeny-pC
— | | [ 3 plasmenyi-E

Fig: Inferred lipid interaction network in Chronic Kidney Disease progression

DNEA'® uses data to estimate the network topology, identify modules by
consensus clustering of the network, and perform enrichment analysis.

"OMa et al. Bioinformatics. '19
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Competitive null:
» SPIA (Tarca et al. '09)
» camera (Wu and Smyth, '12)
» PathNet (Dutta, et al. '12)
Self-contained null:
» topologyGSA (Massa et al. '10)
» DEGraph (Jacob et al. '12)

» NetGSA (Ma et al. '16)
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Synthetic data were generated from TCGA'". p = 2598 genes; n; = 403 ER
positive samples; n. = 117 ER negative samples.

Original Exp Data Centered Exp Data Simulated Exp Data
4
pe(m“‘e
. —
unpermuted é
£
1]
<
3
s
&
Remove sample Add signal for =
means select pathways é
Q
°
|1
©
@
E]
=
i w
- o
= c
o
[G)
Color Key

Permuting the sample labels removes any difference in gene-gene
correlation.

"TCGA. Nature. '12
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Type | Error

100 KEGG pathways (graphite R package).

Table 2 Average type | errors over multiple pathways, grouped
by pathway sizes, for the TCGA breast cancer study [26].

Pathway size

Method <=75 > 75
Pathway-Express 0* 0*

NetGSA 0.052 0.103
SPIA 0* 0*

topologyGSA 0.506 0.754
CAMERA 0.002 0.003
DEGraph 0.001 0.001
PathNet 0.048 0.057

* Under the self-contained null, the number of DE genes is
zero. SPIA and Pathway-Express can not assess the impact

of pathways that do not have any DE genes.

i
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Clockwise from top left to bottom left: Glucagon signaling pathway, AMPK
signaling pathway, Insulin signaling pathway, and B cell receptor signaling
pathway.

A. DC=0.15&size=73 DC =0.09 & size =89 B. DC=0.15&size=73 DC =0.09 & size = 89

04 08
power

0 04 08
power

01 02 03 04 05 01 02 03 04 05°
w u —— PathNet PathNet
-4 CAMERA - CAMERA
DC=0.34 D 2 & si D 4 & si
C =034 &size =65 C=0224size =125 DEGraph c= ‘ifﬁ‘t,“ DEGraph
‘g © % NelGSA ® NetGSA
5 5 SPIA 5 SPIA
[ [ o
‘v, H <& v PE <Z PE
Sa Sa £ Sa
\o b o : o
01 02 03 04 05° 01 02 03 04 05° 0 02 03 04 05° 01 02 03 04 05°
w w w "

Fig: A: sample labels same as in TCGA; B: sample labels permuted.
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Average Power

Powers are averaged over multiple pathways that have similar proportion of

affected genes.

A. DC<=0.16 & size <=75

0 04 08

01 02 03 04 05°
u

DC>0.16 & size <=75

004 08

0.

01 02 03 04 05
u

DC <=0.16 & size > 75

power

[ L
01 02 03 04 05
w

DC>0.16 size > 75

power
004 08

0.

01 02 03 04 05
u

power

power

>‘<+$+

4

PathNet

- CAMERA

DEGraph
NetGSA
SPIA

PE

01 02 03 04 05
u

. DC<=0.16 & size <= 75

00 04 08

power

power
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DC <=0.16 & size > 75

01 02 03 04 05°
u

DC > 0.16 size > 75

01 02 03 04 05
n

Fig: A: sample labels same as in TCGA; B: sample labels permuted.
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Taurine and hypqtaurine metabolism
Glycnsylp\wp\mldylln@ul(ﬁ?lkmc’lm biosyathesis

nsicl g
Alanine, aspartate d glutamate metabolism 9
PR RT— R
o SR—
A.,@,mﬁﬁ il X &

QR signaling
NF-kns B signaling

2]

aion™ ghaling
Epithelial cell signaling j Helicobacter pylor nfection
o g w Hippgsignaling

ot dipocyid
RIG-1-ikg gébpret i A L Halggl(ngmdmg

N i i

inﬁ metabolism

O NetGSA O DEGraph @ PathNet

» Nodes: pathways

» Edges: share of genes (top 5%)
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Synthetic data were generated from a DREAM network with changes in
network topology.

© set1Q set2Q set3@ setd @ set5Q set6Q set7Q sets
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Simulation Il Results

sets 1, 6: no change

sets 3, 8: 20% nodes with differential means
sets 4, 5: 40% nodes with differential means
sets 2, 7: 60% nodes with differential means

sets 1, 2, 3, 5: also have changes in topology

Table: Empirical powers averaged in 100 replications.

s 7, FRED HUTCH
Ly b

) CURES START HERE™

Method | 1 | 2 | 3| 4 |5 | 6|78
NetGSA 0.08 | 0.89 | 0.96 | 0.14 | 0.99 | 0.02 | 0.94 | 0.03
DEGraph 0.18 | 1.00 | 1.00 | 0.49 | 1.00 | 0.06 | 0.62 | 0.31
true power | 0.12 | 0.93 | 0.98 | 0.11 | 0.99 | 0.05 | 0.95 | 0.10
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» REHE offers gain in computational efficiency with little loss in accuracy
for fitting large-scale linear mixed models.
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» REHE offers gain in computational efficiency with little loss in accuracy
for fitting large-scale linear mixed models.

> NetGSA tests for gene set enrichment by incorporating the topology.
> NetGSA can leverage existing network information and expression data.

» Caveat in gene set analysis: null hypothesis

46 /47



References 4l FRED HUTCH
'~_II

CURES START HERE™

1 Ma J, Shojaie, A and Michailidis, G. Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics. 32(20):3165-3174, 2016.

2 Ma JT, Shojaie A and Michailidis G. A comparative study of topology-based pathway
enrichment analysis methods. BMC Bioinformatics. 20 (546). 2019

3 Ma J, Karnovsky A, Afshinnia F, Wigginton J, Feldman H, Rader D, Shama K, Porter A,
Rahman M, He J, Hamm L, Shafi T, Pennathur S, Michailidis G. Differential network-based
enrichment analysis of lipid pathways altered in Chronic Kidney Disease progression.
Bioinformatics. 35(18):3441-3452, 2019.

4 Hellstern M, Ma J, Yue K and Shojaie A. netgsa: Fast computation and interactive
visualization for topology-based pathway enrichment analysis. PLoS Computational Biology.
17(6): 1008979, 2021.

5 Yue K, Ma J, Thornton T and Shojaie A. REHE: fast variance components estimation for
linear mixed models. Genetic Epidemiology. 45(8):891-905, 2021.

47147



	Genome-wide Association Analysis
	Gene Set Analysis

