

Statistical Methods for Analysis of Correlated Data

Jing Ma

Division of Public Health Sciences Fred Hutchinson Cancer Center

Genetic Analysis of Mendelian and Complex Disorders Course 27 July 2022

Collaborators

Kun Yue Mike Hellstern

Ali Shojaie George Michailidis

Correlation among Samples

¹ Lozupone and Knight. *Appl Environ Microbiol.* '05

Correlation among Variables

Fig: Integrated physical interaction network in yeast Saccharomyces cerevisiae².

- ▶ Nodes: genes
- \blacktriangleright Edges: protein \rightarrow DNA and protein – protein
- Genes form functional modules

² Ideker et al. *Science.* 01'

[Genome-wide Association Analysis](#page-5-0)

[Gene Set Analysis](#page-56-0)

Scientific Question: to identify associations of genotypes with phenotypes.

Fig: Steps of a GWAS experiment³.

³Uffelmann et al. *Nat Rev Methods Primers*. '21

Statistical model

$$
y = W\alpha + X_s\beta_s + \gamma + \epsilon
$$

\n
$$
\gamma \sim N(0, \sigma_\gamma^2 K)
$$

\n
$$
\epsilon \sim N(0, \sigma_\epsilon^2 I_n)
$$

Statistical model

$$
y = W\alpha + X_s\beta_s + \gamma + \epsilon
$$

\n
$$
\gamma \sim N(0, \sigma_\gamma^2 K)
$$

\n
$$
\epsilon \sim N(0, \sigma_\epsilon^2 I_n)
$$

This is a linear mixed model where

 \blacktriangleright *y*: an $n \times 1$ vector of quantitative traits (e.g., red blood cell count)

Statistical model

$$
y = W\alpha + X_s\beta_s + \gamma + \epsilon
$$

\n
$$
\gamma \sim N(0, \sigma_\gamma^2 K)
$$

\n
$$
\epsilon \sim N(0, \sigma_\epsilon^2 I_n)
$$

- \blacktriangleright *y*: an $n \times 1$ vector of quantitative traits (e.g., red blood cell count)
- \triangleright *W*: a matrix of covariates (e.g. age, sex, ancestry)

Statistical model

$$
y = W\alpha + X_s\beta_s + \gamma + \epsilon
$$

\n
$$
\gamma \sim N(0, \sigma_\gamma^2 K)
$$

\n
$$
\epsilon \sim N(0, \sigma_\epsilon^2 I_n)
$$

- \blacktriangleright y: an $n \times 1$ vector of quantitative traits (e.g., red blood cell count)
- \triangleright *W*: a matrix of covariates (e.g. age, sex, ancestry)
- \blacktriangleright *X_s*: an $n \times 1$ vector of genotype values at SNP *s*

Statistical model

$$
y = W\alpha + X_s\beta_s + \gamma + \epsilon
$$

\n
$$
\gamma \sim N(0, \sigma_\gamma^2 K)
$$

\n
$$
\epsilon \sim N(0, \sigma_\epsilon^2 I_n)
$$

- \blacktriangleright y: an $n \times 1$ vector of quantitative traits (e.g., red blood cell count)
- \blacktriangleright *W*: a matrix of covariates (e.g. age, sex, ancestry)
- \blacktriangleright *X_s*: an $n \times 1$ vector of genotype values at SNP *s*
- I β*s*: the strength of association between SNP *s* and *y*

Statistical model

$$
y = W\alpha + X_s\beta_s + \gamma + \epsilon
$$

\n
$$
\gamma \sim N(0, \sigma_\gamma^2 K)
$$

\n
$$
\epsilon \sim N(0, \sigma_\epsilon^2 I_n)
$$

- \blacktriangleright y: an $n \times 1$ vector of quantitative traits (e.g., red blood cell count)
- \blacktriangleright *W*: a matrix of covariates (e.g. age, sex, ancestry)
- \blacktriangleright *X_s*: an $n \times 1$ vector of genotype values at SNP *s*
- I β*s*: the strength of association between SNP *s* and *y*
- \triangleright γ : a random effect that captures the polygenic effect of other SNPs

Statistical model

$$
y = W\alpha + X_s\beta_s + \gamma + \epsilon
$$

\n
$$
\gamma \sim N(0, \sigma_\gamma^2 K)
$$

\n
$$
\epsilon \sim N(0, \sigma_\epsilon^2 I_n)
$$

- \blacktriangleright y: an $n \times 1$ vector of quantitative traits (e.g., red blood cell count)
- \blacktriangleright *W*: a matrix of covariates (e.g. age, sex, ancestry)
- \blacktriangleright *X_s*: an $n \times 1$ vector of genotype values at SNP *s*
- I β*s*: the strength of association between SNP *s* and *y*
- \triangleright γ : a random effect that captures the polygenic effect of other SNPs
- \blacktriangleright *K*: $n \times n$ kinship matrix

Problems of Interest

Input data: (W, X_s, y, K)

Association testing

$$
\textit{H}_0: \beta_s = 0
$$

Heritability estimation

$$
h^2 = \frac{\sigma_{\gamma}^2}{\sigma_{\gamma}^2 + \sigma_{\epsilon}^2}
$$

$$
y = W\alpha + X_s\beta_s + u,
$$

where $u \sim \mathcal{N}(0, \sigma_\gamma^2 V)$ and $V = K + \sigma_\epsilon^2/\sigma_\gamma^2 I_n$.

$$
y = W\alpha + X_s\beta_s + u,
$$

where $u \sim \mathcal{N}(0, \sigma_\gamma^2 V)$ and $V = K + \sigma_\epsilon^2/\sigma_\gamma^2 I_n$.

Generalized least squares

$$
\begin{bmatrix} \widehat{\alpha} \\ \widehat{\beta}_s \end{bmatrix} = (X^{\mathsf{T}} V^{-1} X)^{-1} X^{\mathsf{T}} V^{-1} y
$$

$$
y = W\alpha + X_s\beta_s + u,
$$

where $u \sim \mathcal{N}(0, \sigma_\gamma^2 V)$ and $V = K + \sigma_\epsilon^2/\sigma_\gamma^2 I_n$.

Generalized least squares

$$
\begin{bmatrix} \widehat{\alpha} \\ \widehat{\beta}_s \end{bmatrix} = (X^{\mathsf{T}} V^{-1} X)^{-1} X^{\mathsf{T}} V^{-1} y
$$

Both analysis tasks require estimating the variance components!

Let $Z \in \{0, 1, 2\}^{n \times q}$ denote the remaining q SNPs (i.e. excluding X_s).

Let $Z \in \{0, 1, 2\}^{n \times q}$ denote the remaining q SNPs (i.e. excluding X_s). Consider the model

y = $W\alpha + X_s\beta_s + Z\tau + \epsilon$

Let $Z \in \{0, 1, 2\}^{n \times q}$ denote the remaining q SNPs (i.e. excluding X_s). Consider the model

$$
y = W\alpha + X_s\beta_s + Z\tau + \epsilon
$$

The coefficient β*^s* is the effect of SNP *s* on *y* after adjusting the effects introduced by other SNPs *Z*.

Let $Z \in \{0, 1, 2\}^{n \times q}$ denote the remaining q SNPs (i.e. excluding X_s). Consider the model

$$
y = W\alpha + X_s\beta_s + Z\tau + \epsilon
$$

The coefficient β*^s* is the effect of SNP *s* on *y* after adjusting the effects introduced by other SNPs *Z*.

Fitting the model

$$
\tau_j \sim \mathcal{N}(0, \sigma_\gamma^2), \quad j=1,\ldots,q
$$

Let $Z \in \{0, 1, 2\}^{n \times q}$ denote the remaining q SNPs (i.e. excluding X_s). Consider the model

$$
y = W\alpha + X_s\beta_s + Z\tau + \epsilon
$$

The coefficient β*^s* is the effect of SNP *s* on *y* after adjusting the effects introduced by other SNPs *Z*.

Fitting the model

$$
\tau_j \sim \mathcal{N}(0, \sigma_\gamma^2), \quad j = 1, \ldots, q
$$

Averaging over the distribution of τ_j 's, we obtain

$$
y \sim \mathcal{N}(W\alpha + X_s\beta_s, \sigma_\gamma^2 ZZ^{\scriptscriptstyle{\mathsf{T}}} + \sigma_\epsilon^2 I_n)
$$

Let $Z \in \{0, 1, 2\}^{n \times q}$ denote the remaining q SNPs (i.e. excluding X_s). Consider the model

$$
y = W\alpha + X_s\beta_s + Z\tau + \epsilon
$$

The coefficient β*^s* is the effect of SNP *s* on *y* after adjusting the effects introduced by other SNPs *Z*.

Fitting the model

$$
\tau_j \sim \mathcal{N}(0, \sigma_\gamma^2), \quad j=1,\ldots,q
$$

Averaging over the distribution of τ_j 's, we obtain

$$
y \sim \mathcal{N}(W\alpha + X_s\beta_s, \sigma_\gamma^2 Z Z^{\mathsf{T}} + \sigma_\epsilon^2 I_n)
$$

The kinship $K = ZZ^{\mathsf{T}}$ is a natural choice.

Maximum likelihood (null)

$$
\max_{\sigma_{\gamma}^2, \sigma_{\varepsilon}^2/\sigma_{\gamma}^2} \; \{-\frac{1}{2} \log |\sigma_{\gamma}^2 V| - \frac{1}{2} \sigma_{\gamma}^{-2} (y - W\widehat{\alpha})^T V^{-1} (y - W\widehat{\alpha})\}
$$

Maximum likelihood (null)

$$
\max_{\sigma_{\gamma}^2, \sigma_{\epsilon}^2/\sigma_{\gamma}^2} \; \{-\frac{1}{2} \log |\sigma_{\gamma}^2 V| - \frac{1}{2} \sigma_{\gamma}^{-2} (y - W\widehat{\alpha})^T V^{-1} (y - W\widehat{\alpha})\}
$$

Restricted maximum likelihood (REML)

$$
\max_{\sigma_{\gamma}^2, \sigma_{\epsilon}^2/\sigma_{\gamma}^2} \{ likelihood \ of \ L^{\mathsf{T}} y \}
$$

where $L^{\mathsf{T}} W = 0$ and L^{T} has full row rank.

Maximum likelihood (null)

$$
\max_{\sigma_{\gamma}^2, \sigma_{\epsilon}^2/\sigma_{\gamma}^2} \; \{-\frac{1}{2} \log |\sigma_{\gamma}^2 V| - \frac{1}{2} \sigma_{\gamma}^{-2} (y - W\widehat{\alpha})^T V^{-1} (y - W\widehat{\alpha})\}
$$

Restricted maximum likelihood (REML)

$$
\max_{\sigma_{\gamma}^2, \sigma_{\epsilon}^2/\sigma_{\gamma}^2} \{\text{likelihood of } L^{\mathsf{T}} y\}
$$

where $L^{\mathsf{T}} W = 0$ and L^{T} has full row rank.

 \odot REML estimator has the smallest variance among all estimators

Maximum likelihood (null)

$$
\max_{\sigma_{\gamma}^2, \sigma_{\epsilon}^2/\sigma_{\gamma}^2} \; \{-\frac{1}{2} \log |\sigma_{\gamma}^2 V| - \frac{1}{2} \sigma_{\gamma}^{-2} (y - W \widehat{\alpha})^T V^{-1} (y - W \widehat{\alpha})\}
$$

Restricted maximum likelihood (REML)

$$
\max_{\sigma_{\gamma}^2, \sigma_{\epsilon}^2/\sigma_{\gamma}^2} \{\text{likelihood of } L^{\mathsf{T}} y\}
$$

where $L^{\mathsf{T}} W = 0$ and L^{T} has full row rank.

 \odot REML estimator has the smallest variance among all estimators

 \odot REML is computationally expensive: need to invert $n \times n$ matrices where $n > 100K$ in large studies

Maximum likelihood (null)

$$
\max_{\sigma_{\gamma}^2, \sigma_{\epsilon}^2/\sigma_{\gamma}^2} \left\{ -\frac{1}{2} \log |\sigma_{\gamma}^2 V| - \frac{1}{2} \sigma_{\gamma}^{-2} (y - W\widehat{\alpha})^T V^{-1} (y - W\widehat{\alpha}) \right\}
$$

Restricted maximum likelihood (REML)

$$
\max_{\sigma_{\gamma}^2, \sigma_{\epsilon}^2/\sigma_{\gamma}^2} \{\text{likelihood of } L^{\mathsf{T}} y\}
$$

where $L^{\mathsf{T}} W = 0$ and L^{T} has full row rank.

 \odot REML estimator has the smallest variance among all estimators

 \odot REML is computationally expensive: need to invert $n \times n$ matrices where $n > 100K$ in large studies

Need alternatives that can balance statistical and computational efficiency.

Assume no fixed effects for the moment. The model is

 $y = \gamma + \epsilon$.

Assume no fixed effects for the moment. The model is

$$
y=\gamma+\epsilon.
$$

The second moment of *y* is

$$
E(yy^{\mathsf{T}})=\sigma_{\gamma}^2K+\sigma_{\epsilon}^2I_n.
$$

Assume no fixed effects for the moment. The model is

$$
y=\gamma+\epsilon.
$$

The second moment of *y* is

$$
\mathsf{E}(yy^{\mathsf{T}})=\sigma_{\gamma}^2 K+\sigma_{\epsilon}^2 I_n.
$$

 yy^T is a linear function of K and I_n !

Let vec(*K*) denote the vectorization of *K* by stacking its columns. Let $n^* = n^2$ and

 $\widetilde{Y} = \text{vec}(yy^{\mathsf{T}}) \in \mathbb{R}^{n^*}, \quad \widetilde{X} = [\text{vec}(I_n), \text{vec}(K)] \in \mathbb{R}^{n^* \times 2}.$

⁴Haseman and Elston. *Behavior Genetics*. '72; Sofer T. *Stat. Appl. Genet. Mol. Biol.* '17

.

Let vec(*K*) denote the vectorization of *K* by stacking its columns. Let $n^* = n^2$ and

$$
\widetilde{Y} = \text{vec}(\text{y}\text{y}^{\top}) \in \mathbb{R}^{n^*}, \quad \widetilde{X} = [\text{vec}(I_n), \text{vec}(K)] \in \mathbb{R}^{n^* \times 2}
$$

HE regression⁴ solves for σ_j^2 by minimizing

$$
\frac{1}{n^*}(\widetilde{Y}-\widetilde{X}\sigma^2)^{\mathsf{T}}(\widetilde{Y}-\widetilde{X}\sigma^2)
$$

⁴Haseman and Elston. *Behavior Genetics*. '72; Sofer T. *Stat. Appl. Genet. Mol. Biol.* '17

.

Let vec(*K*) denote the vectorization of *K* by stacking its columns. Let $n^* = n^2$ and

$$
\widetilde{Y} = \text{vec}(\text{y}\text{y}^{\top}) \in \mathbb{R}^{n^*}, \quad \widetilde{X} = [\text{vec}(I_n), \text{vec}(K)] \in \mathbb{R}^{n^* \times 2}
$$

HE regression⁴ solves for σ_j^2 by minimizing

$$
\frac{1}{n^*}(\widetilde{Y}-\widetilde{X}\sigma^2)^{\mathsf{T}}(\widetilde{Y}-\widetilde{X}\sigma^2)
$$

 \odot The HF estimator is unbiased.

 \circledcirc HE is computationally efficient: $O(dn^2)$ as opposed to $O(n^3)$ for REML

⁴Haseman and Elston. *Behavior Genetics*. '72; Sofer T. *Stat. Appl. Genet. Mol. Biol.* '17

.

Let vec(*K*) denote the vectorization of *K* by stacking its columns. Let $n^* = n^2$ and

$$
\widetilde{Y} = \text{vec}(\text{y}\text{y}^{\top}) \in \mathbb{R}^{n^*}, \quad \widetilde{X} = [\text{vec}(I_n), \text{vec}(K)] \in \mathbb{R}^{n^* \times 2}
$$

HE regression⁴ solves for σ_j^2 by minimizing

$$
\frac{1}{n^*}(\widetilde{Y}-\widetilde{X}\sigma^2)^{\mathsf{T}}(\widetilde{Y}-\widetilde{X}\sigma^2)
$$

 \odot The HF estimator is unbiased.

 \circledcirc HE is computationally efficient: $O(dn^2)$ as opposed to $O(n^3)$ for REML

 \odot May get negative estimates: truncation to zero?

⁴Haseman and Elston. *Behavior Genetics*. '72; Sofer T. *Stat. Appl. Genet. Mol. Biol.* '17

Restricted HE Regression

 \odot Avoid negative estimates by non-negative least squares (NNLS)

 \odot Avoid negative estimates by non-negative least squares (NNLS)

REHE solves for the variance components by minimizing

$$
\frac{1}{n^*}(\widetilde{Y}-\widetilde{X}\sigma^2)^T(\widetilde{Y}-\widetilde{X}\sigma^2)=\frac{1}{n^*}\left\{(\sigma^2)^T\widetilde{X}^T\widetilde{X}\sigma^2-2(\sigma^2)^T\widetilde{X}^T\widetilde{Y}\right\},\,
$$

subject to $\sigma^2 \geq 0$.

 \odot Avoid negative estimates by non-negative least squares (NNLS)

REHE solves for the variance components by minimizing

$$
\frac{1}{n^*}(\widetilde{Y}-\widetilde{X}\sigma^2)^T(\widetilde{Y}-\widetilde{X}\sigma^2)=\frac{1}{n^*}\left\{(\sigma^2)^T\widetilde{X}^T\widetilde{X}\sigma^2-2(\sigma^2)^T\widetilde{X}^T\widetilde{Y}\right\},\,
$$

subject to $\sigma^2 \geq 0$.

 \odot Global minimizer is guaranteed due to convexity.

 \odot Avoid negative estimates by non-negative least squares (NNLS)

REHE solves for the variance components by minimizing

$$
\frac{1}{n^*}(\widetilde{Y}-\widetilde{X}\sigma^2)^T(\widetilde{Y}-\widetilde{X}\sigma^2)=\frac{1}{n^*}\left\{(\sigma^2)^T\widetilde{X}^T\widetilde{X}\sigma^2-2(\sigma^2)^T\widetilde{X}^T\widetilde{Y}\right\},\,
$$

subject to $\sigma^2 \geq 0$.

 \odot Global minimizer is guaranteed due to convexity.

 \odot Computational cost of REHE is comparable to HE, both faster than REML.

 \odot Avoid negative estimates by non-negative least squares (NNLS)

REHE solves for the variance components by minimizing

$$
\frac{1}{n^*}(\widetilde{Y}-\widetilde{X}\sigma^2)^T(\widetilde{Y}-\widetilde{X}\sigma^2)=\frac{1}{n^*}\left\{(\sigma^2)^T\widetilde{X}^T\widetilde{X}\sigma^2-2(\sigma^2)^T\widetilde{X}^T\widetilde{Y}\right\},\,
$$

subject to $\sigma^2 \geq 0$.

 \odot Global minimizer is guaranteed due to convexity.

 \odot Computational cost of REHE is comparable to HE, both faster than REML.

 \odot May get zero estimates

$$
\frac{1}{n^*}\widetilde{X}^T\widetilde{X}=\frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}_i^T\widetilde{X}_i, \quad \frac{1}{n^*}\widetilde{X}^T\widetilde{Y}=\frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}_i^T\widetilde{Y}_i.
$$

$$
\frac{1}{n^*}\widetilde{X}^T\widetilde{X}=\frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}_i^T\widetilde{X}_i, \quad \frac{1}{n^*}\widetilde{X}^T\widetilde{Y}=\frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}_i^T\widetilde{Y}_i.
$$

We can approximate these inner products by subsampling rows of \widetilde{X} and \widetilde{Y} .

$$
\frac{1}{n^*}\widetilde{X}^T\widetilde{X}=\frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}_i^T\widetilde{X}_i, \quad \frac{1}{n^*}\widetilde{X}^T\widetilde{Y}=\frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}_i^T\widetilde{Y}_i.
$$

We can approximate these inner products by subsampling rows of \widetilde{X} and \widetilde{Y} .

REHE with Resampling (reREHE)

$$
\frac{1}{n^*}\widetilde{X}^T\widetilde{X}=\frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}_i^T\widetilde{X}_i, \quad \frac{1}{n^*}\widetilde{X}^T\widetilde{Y}=\frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}_i^T\widetilde{Y}_i.
$$

We can approximate these inner products by subsampling rows of \widetilde{X} and \widetilde{Y} .

REHE with Resampling (reREHE)

 \odot reREHE estimates are strictly positive and can be faster to compute.

Suppose we have covariates. The null model

$$
y = W\alpha + \gamma + \epsilon.
$$

 $5K^\dagger$ can be replaced by K when n is large.

Suppose we have covariates. The null model

$$
y = W\alpha + \gamma + \epsilon.
$$

Let $P^\perp = \mathit{I}_n - W(W^\intercal W)^{-1} \, W^\intercal$ denote the projection matrix onto the orthogonal complement of the column space of *W*. Let

$$
\mathsf{y}^\dagger = \mathsf{P}^\perp \mathsf{y}, \quad \gamma^\dagger = \mathsf{P}^\perp \gamma, \quad \epsilon^\dagger = \mathsf{P}^\perp \epsilon
$$

 $5K^\dagger$ can be replaced by K when n is large.

Suppose we have covariates. The null model

$$
y = W\alpha + \gamma + \epsilon.
$$

Let $P^\perp = \mathit{I}_n - W(W^\intercal W)^{-1} \, W^\intercal$ denote the projection matrix onto the orthogonal complement of the column space of *W*. Let

$$
y^{\dagger} = P^{\perp} y, \quad \gamma^{\dagger} = P^{\perp} \gamma, \quad \epsilon^{\dagger} = P^{\perp} \epsilon
$$

We obtain a new model with no covariates

$$
y^{\dagger} = \gamma^{\dagger} + \epsilon^{\dagger}, \quad \gamma^{\dagger} \sim \mathcal{N}(0, \sigma_{\gamma}^2 K^{\dagger})
$$

where $K^{\dagger} = P^{\perp} K P^{\perp 5}$.

 $5K^\dagger$ can be replaced by K when n is large.

Constructing Confidence Intervals

 6 Can also construct quantile confidence interval

Constructing Confidence Intervals

Parametric Bootstrap

- **Compute REHE estimates** $\tilde{\sigma}_{\gamma}^2, \tilde{\sigma}_{\epsilon}^2$ **based on** \tilde{Y}, K, I_n **;**
- \blacktriangleright For $b = 1$ to B
	- **► Generate response vector** $\widetilde{Y}^{*(b)}$ **from** $\mathcal{N}(0, \widetilde{\sigma}_\gamma^2 K + \widetilde{\sigma}_\epsilon^2 I_n)$ **;
** $\sum_{k=0}^{\infty}$ **consults** $\sum_{k=0}^{\infty} \Gamma(k)$ **is** $\sum_{k=0}^{\infty} \widetilde{Y}^{*(b)}$ **.**
	- ► Compute REHE estimates $\widetilde{\sigma}_{\gamma}^{2(b)}, \widetilde{\sigma}_{\epsilon}^{2(b)}$, based on $\widetilde{Y}^{*(b)}, K, I_n;$

⁶Can also construct quantile confidence interval

Constructing Confidence Intervals

Parametric Bootstrap

- **Compute REHE estimates** $\tilde{\sigma}_{\gamma}^2, \tilde{\sigma}_{\epsilon}^2$ **based on** \tilde{Y}, K, I_n **;**
- \blacktriangleright For $b = 1$ to B
	- **► Generate response vector** $\widetilde{Y}^{*(b)}$ **from** $\mathcal{N}(0, \widetilde{\sigma}_\gamma^2 K + \widetilde{\sigma}_\epsilon^2 I_n)$ **;
** $\sum_{k=0}^{\infty}$ **consults** $\sum_{k=0}^{\infty} \Gamma(k)$ **is** $\sum_{k=0}^{\infty} \widetilde{Y}^{*(b)}$ **.**
	- ► Compute REHE estimates $\widetilde{\sigma}_{\gamma}^{2(b)}, \widetilde{\sigma}_{\epsilon}^{2(b)}$, based on $\widetilde{Y}^{*(b)}, K, I_n;$

Wald-type confidence interval⁶

$$
\left[\widetilde{\sigma}^2_{\gamma}-Z_{\alpha/2}\times \text{s.e.}\left(\widetilde{\sigma}^{2(b)}_{\gamma}\right),\widetilde{\sigma}^2_{\gamma}+Z_{\alpha/2}\times \text{s.e.}\left(\widetilde{\sigma}^{2(b)}_{\gamma}\right)\right],
$$

where $z_{\alpha/2}$ is the $(1 - \alpha/2)$ -th percentile of the standard normal distribution.

⁶Can also construct quantile confidence interval

 \blacktriangleright $n = 12,502$ after removing observations with missing values

- \blacktriangleright $n = 12,502$ after removing observations with missing values
- \blacktriangleright *y*: red blood cell count

- \blacktriangleright $n = 12,502$ after removing observations with missing values
- \blacktriangleright *y*: red blood cell count
- \blacktriangleright *X*: 4,100,028 SNPs

- \blacktriangleright $n = 12,502$ after removing observations with missing values
- \blacktriangleright y: red blood cell count
- \blacktriangleright *X*: 4,100,028 SNPs
- ▶ Covariates *W*: age, sex, cigarette use, field center indicator, genetic subgroup indicator, ancestry, sampling weights

- \blacktriangleright $n = 12,502$ after removing observations with missing values
- \blacktriangleright y: red blood cell count
- \blacktriangleright *X*: 4,100,028 SNPs
- ▶ Covariates *W*: age, sex, cigarette use, field center indicator, genetic subgroup indicator, ancestry, sampling weights
- \triangleright Variance components: genetic relatedness, membership of household, and membership of community group

- \blacktriangleright $n = 12,502$ after removing observations with missing values
- \blacktriangleright y: red blood cell count
- \blacktriangleright *X*: 4,100,028 SNPs
- ▶ Covariates *W*: age, sex, cigarette use, field center indicator, genetic subgroup indicator, ancestry, sampling weights
- \triangleright Variance components: genetic relatedness, membership of household, and membership of community group
- \blacktriangleright Bonferroni correction for multiple testing

- \blacktriangleright $n = 12,502$ after removing observations with missing values
- \blacktriangleright y: red blood cell count
- \blacktriangleright *X*: 4,100,028 SNPs
- ▶ Covariates *W*: age, sex, cigarette use, field center indicator, genetic subgroup indicator, ancestry, sampling weights
- \triangleright Variance components: genetic relatedness, membership of household. and membership of community group
- \blacktriangleright Bonferroni correction for multiple testing
- \triangleright REHE took 2.4 min for estimation and 18 min for inference; REML 23.9 min

GWAS for HCHS/SOL Results

- REML - REHE Wald - REHE Quantile

Simulation

Synthetic data were generated from

$$
y=\sigma_0^2I_n+\sigma_1^2K_1,
$$

where K_1 is a submatrix of the genetic relatedness matrix from HCHS/SOL.

$$
\blacktriangleright n \in \{3,000,6,000,9,000,12,000\}
$$

$$
\blacktriangleright \ (\sigma_0^2, \ \sigma_1^2) \in \{(0.1, \ 0.1), \, (0.01, \ 0.1)\}
$$

23% HE estimates were negative before truncation at zero $(n = 3000, \sigma_0^2 = 0.01).$

Estimation Results

REML **+++** REHE ++++ HE ++++ reREHE 0.05 ++++ reREHE 0.1

Confidence Interval Results

 $\sigma_0^2 = 0.1$, $\sigma_1^2 = 0.1$

 σ_0^2 = 0.01, σ_1^2 = 0.1

REML **• REHE Wald • REHE Quantile**

[Genome-wide Association Analysis](#page-5-0)

[Gene Set Analysis](#page-56-0)

22 / 47

Scientific Question: whether a *gene set* is associated with a trait.

Scientific Question: whether a *gene set* is associated with a trait.

Motivation: many biological processes are driven by mechanisms involving more than one SNP

Scientific Question: whether a *gene set* is associated with a trait.

Motivation: many biological processes are driven by mechanisms involving more than one SNP

- \odot Easy interpretation
- \odot Fewer number of gene sets compared to number of genes/SNPs
- \odot More power by pooling many weaker signals

Gene Set Analysis

Gene Set Analysis

Pathway Database

KEGG, MSigDB, BioCarta, Reactome, MetaCyc, etc.

Motivation: genes are not independent

Motivation: genes are not independent

Most existing methods rely on curated interactions from pathway databases.

- / Curated networks can be incomplete and/or inaccurate
- / Curated networks lack condition/disease-specific alterations in interactions

Motivation: genes are not independent

Most existing methods rely on curated interactions from pathway databases.

- / Curated networks can be incomplete and/or inaccurate
- / Curated networks lack condition/disease-specific alterations in interactions

Which null hypothesis?

Motivation: genes are not independent

Most existing methods rely on curated interactions from pathway databases.

- / Curated networks can be incomplete and/or inaccurate
- / Curated networks lack condition/disease-specific alterations in interactions

Which null hypothesis?

 \triangleright The genes in a given pathway are at most as differentially expressed as those outside the pathway (camera, PathNet).
Topology-based Gene Set Analysis

Motivation: genes are not independent

Most existing methods rely on curated interactions from pathway databases.

- / Curated networks can be incomplete and/or inaccurate
- / Curated networks lack condition/disease-specific alterations in interactions

Which null hypothesis?

- \triangleright The genes in a given pathway are at most as differentially expressed as those outside the pathway (camera, PathNet).
- \triangleright The observed number of DE genes is just by chance and the DE genes are randomly located in the pathway (SPIA, Pathway-Express)

Topology-based Gene Set Analysis

Motivation: genes are not independent

Most existing methods rely on curated interactions from pathway databases.

- / Curated networks can be incomplete and/or inaccurate
- / Curated networks lack condition/disease-specific alterations in interactions

Which null hypothesis?

- \triangleright The genes in a given pathway are at most as differentially expressed as those outside the pathway (camera, PathNet).
- \triangleright The observed number of DE genes is just by chance and the DE genes are randomly located in the pathway (SPIA, Pathway-Express)
- ► Self-contained null (NetGSA, DEGraph and topologyGSA)

Nodes 2, 4, 6, 7 have larger changes in mean in case B than in case A.

Node 1 as opposed to node 2 has change in mean in case C.

There is an additional change in correlation between nodes 4 and 6 in case D.

There is an additional change in correlation between nodes 1 and 4 in case E.

- \triangleright Change in mean values of genes in the set
- \blacktriangleright Position of genes: hub genes are more important
- \blacktriangleright Change in gene-gene interaction

- \triangleright Change in mean values of genes in the set
- \blacktriangleright Position of genes: hub genes are more important
- \blacktriangleright Change in gene-gene interaction

NetGSA captures all three factors!

Let *Y* ∈ \mathbb{R}^p denote the expression values of *p* genes from an arbitrary sample. Suppose $Y = X + \epsilon$, where X is signal and ϵ is noise.

⁷Shojaie and Michailidis. *JCB*. '09

Let *Y* ∈ \mathbb{R}^p denote the expression values of *p* genes from an arbitrary sample. Suppose $Y = X + \epsilon$, where X is signal and ϵ is noise.

Assume the *p* genes are related via a network $A = (a_{ii})$ where a_{ii} denotes the strength of association between genes *i* and *j*.

$$
(X_1) \xrightarrow{a_{12}} (X_2) \xrightarrow{a_{23}} (X_3)
$$

⁷Shojaie and Michailidis. *JCB*. '09

Let *Y* ∈ \mathbb{R}^p denote the expression values of *p* genes from an arbitrary sample. Suppose $Y = X + \epsilon$, where X is signal and ϵ is noise.

Assume the *p* genes are related via a network $A = (a_{ii})$ where a_{ii} denotes the strength of association between genes *i* and *j*.

We model X via the latent variable model⁷

$$
X_1 = \gamma_1
$$

\n
$$
X_2 = a_{12}X_1 + \gamma_2
$$

\n
$$
X_3 = a_{23}X_2 + \gamma_3 = a_{12}a_{23}\gamma_1 + a_{23}\gamma_2 + \gamma_3
$$

where $\gamma_j \sim \mathcal{N}(\mu_j, \sigma^2_\gamma)$ represents the baseline expression of gene *j*.

⁷Shojaie and Michailidis. *JCB*. '09

$$
Y = \Lambda \gamma + \epsilon, \quad \gamma \sim \mathcal{N}(\mu, \sigma^2 \gamma I_p), \quad \epsilon \sim \mathcal{N}(0, \sigma^2 \epsilon I_p)
$$

where

$$
\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ a_{12} & 1 & 0 \\ a_{12}a_{23} & a_{23} & 1 \end{pmatrix}
$$

is the influence matrix of the gene network $\Lambda = (I_p - A)^{-1}.$

$$
Y = \Lambda \gamma + \epsilon, \quad \gamma \sim \mathcal{N}(\mu, \sigma_{\gamma}^2 I_p), \quad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2 I_p)
$$

where

$$
\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ a_{12} & 1 & 0 \\ a_{12}a_{23} & a_{23} & 1 \end{pmatrix}
$$

is the influence matrix of the gene network $\Lambda = (I_p - A)^{-1}.$

Statistical Inference Given data Y_i ($i = 1, ..., n$) and network *A*, test for a gene set *G*

$$
H_0: \mu_G^{(1)} = \mu_G^{(2)}
$$

$$
Y = \Lambda \gamma + \epsilon, \quad \gamma \sim \mathcal{N}(\mu, \sigma_{\gamma}^2 I_p), \quad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2 I_p)
$$

where

$$
\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ a_{12} & 1 & 0 \\ a_{12}a_{23} & a_{23} & 1 \end{pmatrix}
$$

is the influence matrix of the gene network $\Lambda = (I_p - A)^{-1}.$

Statistical Inference Given data Y_i ($i = 1, ..., n$) and network *A*, test for a gene set *G*

$$
H_0: \mu_G^{(1)} = \mu_G^{(2)}
$$

or

$$
H_0^{net}:(\Lambda^{(1)}\mu^{(1)})_G=(\Lambda^{(2)}\mu^{(2)})_G
$$

⁸Ma et al. *Bioinformatics*. '16

A is weighted.

⁸Ma et al. *Bioinformatics*. '16

A is weighted.

NetGSA infers the weights from data (independent from *Y*) using graphical models.

⁸Ma et al. *Bioinformatics*. '16

A is weighted.

NetGSA infers the weights from data (independent from *Y*) using graphical models.

 \odot Many RNA-seq data are available

⁸Ma et al. *Bioinformatics*. '16

A is weighted.

NetGSA infers the weights from data (independent from *Y*) using graphical models.

 \odot Many RNA-seq data are available

 \odot Can use curated networks as side information to improve data-driven network inference⁸

⁸Ma et al. *Bioinformatics*. '16

$$
A = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ . & ? & 1 & 0 & ? & 0 \\ 7 & . & ? & ? & 0 & ? \\ 1 & ? & . & ? & 0 & 0 \\ 0 & ? & ? & . & ? & 1 \\ ? & 0 & 0 & ? & . & ? \\ 0 & ? & 0 & 1 & ? & . \end{array}\right) \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}
$$

 \triangleright 0: there is no interaction; 1: there is interaction; ?: unknown

$$
A = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ . & ? & 1 & 0 & ? & 0 \\ 7 & . & ? & ? & 0 & ? \\ 1 & ? & . & ? & 0 & 0 \\ 0 & ? & ? & . & ? & 1 \\ ? & 0 & 0 & ? & . & ? \\ 0 & ? & 0 & 1 & ? & . \end{array}\right) \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}
$$

- \triangleright 0: there is no interaction; 1: there is interaction; ?: unknown
- \triangleright Given data, we use graphical models to incorporate existing information using a constrained optimization framework.

$$
A = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ . & ? & 1 & 0 & ? & 0 \\ 1 & ? & . & ? & 0 & ? \\ 1 & ? & . & ? & 0 & 0 \\ 0 & ? & ? & . & ? & 1 \\ ? & 0 & 0 & ? & . & ? \\ 0 & ? & 0 & 1 & ? & . \end{array}\right) \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}
$$

- \triangleright 0: there is no interaction; 1: there is interaction; ?: unknown
- \triangleright Given data, we use graphical models to incorporate existing information using a constrained optimization framework.
- \triangleright Can estimate novel interactions and validate existing information.

- \triangleright 0: there is no interaction; 1: there is interaction; ?: unknown
- \triangleright Given data, we use graphical models to incorporate existing information using a constrained optimization framework.
- \triangleright Can estimate novel interactions and validate existing information.
- Consistent estimation of network requires fewer observations, depending on the available external information.

Large Networks

⁹Hellstern et al. *PLoS Comp Bio*. '21

Large Networks

Partition large networks into smaller ones by estimating a block diagonal network.

This strategy improves computational speed with little loss in performance⁹.

⁹Hellstern et al. *PLoS Comp Bio*. '21

Incomplete Pathway Information

Pathway memberships may be unknown.

¹⁰Ma et al. *Bioinformatics*. '19

Incomplete Pathway Information

Pathway memberships may be unknown.

Fig: Inferred lipid interaction network in Chronic Kidney Disease progression

DNEA¹⁰ uses data to estimate the network topology, identify modules by consensus clustering of the network, and perform enrichment analysis.

¹⁰Ma et al. *Bioinformatics*. '19

Topology-based Methods

FRED HUTCH

Competitive null:

- \blacktriangleright SPIA (Tarca et al. '09)
- \triangleright camera (Wu and Smyth, '12)
- \blacktriangleright PathNet (Dutta, et al. '12)

Self-contained null:

- \triangleright topologyGSA (Massa et al. '10)
- \triangleright DEGraph (Jacob et al. '12)
- \blacktriangleright NetGSA (Ma et al. '16)

Simulation I

Synthetic data were generated from TCGA¹¹. $p = 2598$ genes; $n_1 = 403$ ER positive samples; $n_2 = 117$ ER negative samples.

Permuting the sample labels removes any difference in gene-gene correlation.

¹¹TCGA. *Nature*. '12

Type I Error

100 KEGG pathways (graphite R package).

Table 2 Average type I errors over multiple pathways, grouped by pathway sizes, for the TCGA breast cancer study [26].

* Under the self-contained null, the number of DE genes is zero. SPIA and Pathway-Express can not assess the impact of pathways that do not have any DE genes.

Power of Selected Pathways

Clockwise from top left to bottom left: *Glucagon signaling pathway, AMPK signaling pathway, Insulin signaling pathway*, and *B cell receptor signaling pathway*.

Fig: A: sample labels same as in TCGA; B: sample labels permuted.

Average Power

Powers are averaged over multiple pathways that have similar proportion of affected genes.

Fig: A: sample labels same as in TCGA; B: sample labels permuted.

Analysis of TCGA Data

 \blacktriangleright Nodes: pathways

 \blacktriangleright Edges: share of genes (top 5%)

Synthetic data were generated from a DREAM network with changes in network topology.

$$
\bigcirc \mathsf{set}~1 \bigcirc \mathsf{set}~2 \bigcirc \mathsf{set}~3 \bigcirc \mathsf{set}~4 \bigcirc \mathsf{set}~5 \bigcirc \mathsf{set}~6 \bigcirc \mathsf{set}~7 \bigcirc \mathsf{set}~8
$$

Simulation II Results

- sets 1, 6: no change
- sets 3, 8: 20% nodes with differential means
- sets 4, 5: 40% nodes with differential means
- sets 2, 7: 60% nodes with differential means
- sets 1, 2, 3, 5: also have changes in topology

Table: Empirical powers averaged in 100 replications.

 \blacktriangleright REHE offers gain in computational efficiency with little loss in accuracy for fitting large-scale linear mixed models.

- \blacktriangleright REHE offers gain in computational efficiency with little loss in accuracy for fitting large-scale linear mixed models.
- \blacktriangleright NetGSA tests for gene set enrichment by incorporating the topology.

- \blacktriangleright REHE offers gain in computational efficiency with little loss in accuracy for fitting large-scale linear mixed models.
- \triangleright NetGSA tests for gene set enrichment by incorporating the topology.
- \blacktriangleright NetGSA can leverage existing network information and expression data.

- \blacktriangleright REHE offers gain in computational efficiency with little loss in accuracy for fitting *large-scale* linear mixed models.
- \triangleright NetGSA tests for gene set enrichment by incorporating the topology.
- \blacktriangleright NetGSA can leverage existing network information and expression data.
- \triangleright Caveat in gene set analysis: null hypothesis

References

- 1 **Ma J**, Shojaie, A and Michailidis, G. Network-based pathway enrichment analysis with incomplete network information. *Bioinformatics*. 32(20):3165–3174, 2016.
- 2 **Ma J**† , Shojaie A and Michailidis G. A comparative study of topology-based pathway enrichment analysis methods. *BMC Bioinformatics*. 20 (546). 2019
- 3 **Ma J**, Karnovsky A, Afshinnia F, Wigginton J, Feldman H, Rader D, Shama K, Porter A, Rahman M, He J, Hamm L, Shafi T, Pennathur S, Michailidis G. Differential network-based enrichment analysis of lipid pathways altered in Chronic Kidney Disease progression. *Bioinformatics*. 35(18):3441–3452, 2019.
- 4 Hellstern M, **Ma J**, Yue K and Shojaie A. netgsa: Fast computation and interactive visualization for topology-based pathway enrichment analysis. *PLoS Computational Biology*. 17(6): e1008979, 2021.
- 5 Yue K, **Ma J**, Thornton T and Shojaie A. REHE: fast variance components estimation for linear mixed models. *Genetic Epidemiology*. 45(8):891–905, 2021.