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About Me

!2

• Ph.D. in Statistics from U of Michigan


• Postdoc in Biostatistics from U of Pennsylvania


• Joined Fred Hutch in 2017 


• Visited Texas A&M Statistics Dept during 2019-2020



drjingma.com

Microbiome and Immunotherapy
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Microbiome and Immunotherapy
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D’Haens and Jobin (19) Gastroenterology
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Microbiome and Immunotherapy
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D’Haens and Jobin (19) Gastroenterology

Unclear what aspects of the donor/recipient microbiota contribute to 
favorable response: diversity? Specific taxa? Bacterial metabolites?  

What about host attributes?
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Microbiome and Aging
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Aging     Chronological age ≠

Kim and Benayoun (20) Transl. Med. of Aging



drjingma.com

Microbiome and Aging
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Aging     Chronological age ≠

Kim and Benayoun (20) Transl. Med. of Aging

What aspects of the 
gut microbiome and/
or their products 
predict healthy aging?
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Microbiome and Aging
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Aging     Chronological age ≠

Kim and Benayoun (20) Transl. Med. of Aging

What aspects of the 
gut microbiome and/
or their products 
predict healthy aging?

A multi-omics 
approach will provide 
unique insights.
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Systems Biology and Holo-Omics
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Nyholm et al. (20) iScience

Host-microbiota multi-omics
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Two Problems of Interest
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1. Interactions between microbial taxa and other molecules


2. Individual taxon association analysis



drjingma.com

Part I
Interactions between microbial taxa and other 

molecules

�11



drjingma.com

Microbial Interactions
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Tang (19) Nat. Meth. 

Credit : Marina Corral Spence/Springer Nature
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Microbial Interactions
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Uncover community ecology and functions


Tang (19) Nat. Meth. 

Credit : Marina Corral Spence/Springer Nature
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Microbial Interactions
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Uncover community ecology and functions


Predict host phenotype and disease states


Tang (19) Nat. Meth. 

Credit : Marina Corral Spence/Springer Nature
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Microbial Interactions
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Uncover community ecology and functions


Predict host phenotype and disease states


Biomarker discovery by mapping differential interactions
Tang (19) Nat. Meth. 


Credit : Marina Corral Spence/Springer Nature
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Learn Microbial Interactions

!16

Challenge: majority of microbial species can’t be cultured.


Tang (19) Nat. Meth. 

Credit : Marina Corral Spence/Springer Nature
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Learn Microbial Interactions
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Challenge: majority of microbial species can’t be cultured.


Solution: computational methods help understand how microbes 
interact with each other, and with other molecules.

Tang (19) Nat. Meth. 

Credit : Marina Corral Spence/Springer Nature
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Learn Microbial Interactions
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Probabilistic co-abundance networks


• Uncover nonrandom associations. 


• Predict novel ecological interactions, compared to mechanistic 
models.


• Detect altered co-abundances associated with an outcome.
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Co-abundance Networks
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Marginal correlations (ReBoot, SparCC, etc.)


• Easy to infer.


• Can’t distinguish direct vs indirect interactions.

Faust and Huttenhower (12), Friedman and Alm (12). PLoS Comp Bio. 

True

+ +

Marginal

+ +

+
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Co-abundance Networks
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Conditional correlations (SpiecEasi, BAnOCC, etc.)


• Can distinguish direct vs indirect interactions.


• Typically require stronger model assumptions.

True

+ +

Conditional

+ +

Kurtz et a. (15), Schwager et al. (17). PLoS Comp Bio. 
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Microbiome Data are Compositional
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• Hard to control total 
number of reads in one 
experiment


• Transform counts to 
proportions: percent 
composition


• Relative abundances are 
also used in metabolomics.
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Microbiome Data are Sparse
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Poore et al. (20) Nature

Observation based on cancer microbiome data p = 1500.
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Microbiome Data are Sparse
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McMillian et al. (15) Scientific Reports

Observation based on vaginal microbiome data p = 51.
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Centered Log-Ratio Transformation
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Marginal distribution of the genus Porphyromonadaceae based on  
131 observations in McMillian et al. (15).

Inappropriate handling of zeros leads to extremely non-normal distribution.
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Robust CLR Transformation
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Marginal distribution of the genus Porphyromonadaceae based on  
131 observations in McMillian et al. (15).

Robust CLR transforms positive counts only. 

Zeros are assumed to be due to undersampling (censoring).
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metaMint: Censored Graphical Models
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Xo = X⋆(X⋆ > 0)

Observed Latent truth

metaMint 


• Learn associations among latent true log abundances from 
observed data


• Apply regularization to deal with high-dimensionality.
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metaMint Facilitates Data Integration
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Results based on BV microbiome and metabolomic data in McMillian et al. (15).  
Dashed blue edges are unique to metaMint.
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Part II
Individual taxon association analysis
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Selection of Individual Taxon
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Outcome Taxa

Scientific Question: which taxa predict the outcome?
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Selection of Individual Taxon
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Outcome Taxa

Common Challenge: more predictors than observations.

Scientific Question: which taxa predict the outcome?
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Selection of Individual Taxon
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Common Challenge: more predictors than observations.

Solutions: 


• Dimension reduction on predictors
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Selection of Individual Taxon
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Common Challenge: more predictors than observations.

Solutions: 


• Dimension reduction on predictors.


• Assume effects are sparse: a small number of taxa have 
nonzero effects on the outcome.
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Selection of Individual Taxon
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Common Challenge: more predictors than observations.

Solutions: 


• Dimension reduction on predictors


• Assume effects are sparse: a small number of taxa have 
nonzero effects on the outcome.


• Assume effects are smooth with respect to prior structures 
(e.g. the phylogenetic tree)
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Informative Prior Structure

If the tree is informative, then it is reasonable to think that taxa 
closely related on the tree have similar effects on the outcome.

OTU

Genus

…

1 2 3 4
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GMD-biplot
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78% variation 
explained

35% variation 
explained

PCoA using UniFrac Δ PCoA using X and UniFrac Δ; 
phyla (arrows) from GMD biplot

Plots courtesy to Tim Randolph
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Informative Two-way Structures
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Outcome

Similarity Kernel
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Informative Two-way Structures
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Outcome

Similarity Kernel

Similarity Kernel can come from


• Longitudinal or family design 


• Another data view (e.g. metabolomic data)
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GMDI Association Analysis
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Which bacteria are associated with age? 

Number of sig. associations (FDR = 0.1) based on data from 
Yatsunenko et al. (12) Nature: n = 100, p = 149.
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Summary
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Accounting for correlations among features and observations yield 
more powerful inferences.


• metaMint identifies novel microbe-metabolite interactions.


• GMD-biplot provides more interpretative visualization.


• GMDI is more powerful in detecting taxa-outcome associations.
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Collaboration
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• Systems biology


• Multivariate association analysis


• Network analysis


• Statistical learning



drjingma.com

Collaboration
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• Systems biology


• Multivariate association analysis


• Network analysis


• Statistical learning

Large sample size is great, but not necessary!
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