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Microbiome Data

I X = (xij)n×p matrix of microbiome data for n samples and p
taxa

I Due to differences in effort, often work with relative
abundances

0

10000

20000

30000

S1 S2

R
aw

 c
ou

nt
s

0.00

0.25

0.50

0.75

1.00

S1 S2

R
el

at
iv

e 
ab

un
da

nc
e

1 / 25



Microbiome Data

I Similarities among samples better captured by phylogenetic
tree

I Many methods for capturing phylogenetic distances, e.g.
UniFrac dist.
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0 1 1 1 1 1 0 0 0 0 0 0 0 0

=  X
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Microbiome Data

I Similarities among samples better captured by phylogenetic
tree

I Many methods for capturing phylogenetic distances, e.g.
UniFrac dist.

D = 

Deuc = 

0 0 0 0 0 0 1 0 1 0 0 1 1 1
1 0 0 0 0 0 0 1 0 1 1 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0

=  X

taxon presence/absence

UniFrac distance = fraction 
of unshared branches
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Microbiome Data

I Similarities among samples better captured by phylogenetic
tree

I The phylogenetic tree also captures similarities among taxa.

X = 

Q = 

Microbiome data
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Microbiome Data

I Similarities among samples better captured by phylogenetic
tree

I Alternatively, can consider information from metabolic
pathways.

X = 

Q = 

Microbiome data
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Microbiome Data Analysis

I Need to capture

I Similarities among samples – non-Euclidean (e.g. UniFrac
distance)

I Similarities among taxa – phylogenetic tree, pathway
information, etc.

I Often use exploratory data analysis tools

I PCoA (aka MDS)

I DPCoA (Double PCoA)
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Exploratory Analysis using PCoA

First recall PCA

X = 

n samples (rows)
p variables (cols) 

X = USVT

u1

u2

SVD
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Exploratory Analysis using PCoA

First recall PCA

SVD
X = X = USVT

u1

u2
PCA 

Deuc = 

Euclidian distances2

H = -½ J D J 
=  USUT

(J=centering matrix)
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Exploratory Analysis using PCoA

UniFrac PCoA

distance = fraction of 
unshared branches

D = 

0 0 0 0 0 0 1 0 1 0 0 1 1 1
1 0 0 0 0 0 0 1 0 1 1 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0

= X
taxon presence/absence

X = USVT

PCoA

H = -½ J D J
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Exploratory Analysis using DPCoA

DPCoA1 based on phylogenetic tree

Deuc

Q =

X =

1Pavoine et al. 2004; Purdom. AOAS, 2011 9 / 25



Important Variables

Biplots provide simultaneous visualization of samples and variables

≈

X      ≈    u1v1
T + u2v2

T

+

(n x p)

p variables

n
sa

m
pl

es

u1 u2
v1 v2

n samples’ coords
p variables’ coords

U = V =
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in 2-dimensions
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Important Variables

Biplots provide simultaneous visualization of samples and variables

X  ≈  u1 v1
T + u2 v2

T

taxon 43

taxon 1

Blue arrows 
represent 
variables

( 4 ,  -5 )

v1 v2
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Important Variables

Biplots provide simultaneous visualization of samples and variables

I Can also overlay outcome

X  ≈  u1 v1
T + u2 v2

T

taxon 43

outcome, y

taxon 1
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Microbiome Data are Doubly Structured

H = -½ J D J Q =
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Important Variables

Can we draw a biplot that accounts for the external structures?

I Unfortunately, there is no biplot with PCoA because

I PCA uses X and gives: X = USV ᵀ (SVD)

I PCoA uses ∆ and only gives: US2Uᵀ (no V )

I Existing approaches2 in the field are approximate/add hoc.

2Satten et al. PLOS One, 2017 12 / 25
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Important Variables

Can we draw a biplot that accounts for the external structures?

I SVD gives X = USV ᵀ by solving

arg min
U,S,V

‖X −USV ᵀ‖F

where ‖A‖F = trace(AᵀA).

I Consider instead a general norm to incorporate H and Q:

‖X −USV ᵀ‖H,Q

where ‖A‖H,Q = trace(AᵀHAQ).

I The GMD (Gen’zd Matrix Decomp3) gives X = USVᵀ such
that UᵀHU = VᵀQV = IK , and S is the diagonal matrix of
GMD values.

3Allen et al. JASA, 2014 13 / 25



Important Variables

Can we draw a biplot that accounts for the external structures?

I SVD gives X = USV ᵀ by solving

arg min
U,S,V

‖X −USV ᵀ‖F

where ‖A‖F = trace(AᵀA).

I Consider instead a general norm to incorporate H and Q:

‖X −USV ᵀ‖H,Q

where ‖A‖H,Q = trace(AᵀHAQ).

I The GMD (Gen’zd Matrix Decomp3) gives X = USVᵀ such
that UᵀHU = VᵀQV = IK , and S is the diagonal matrix of
GMD values.

3Allen et al. JASA, 2014 13 / 25



Important Variables

Can we draw a biplot that accounts for the external structures?

I SVD gives X = USV ᵀ by solving

arg min
U,S,V

‖X −USV ᵀ‖F

where ‖A‖F = trace(AᵀA).

I Consider instead a general norm to incorporate H and Q:

‖X −USV ᵀ‖H,Q

where ‖A‖H,Q = trace(AᵀHAQ).

I The GMD (Gen’zd Matrix Decomp3) gives X = USVᵀ such
that UᵀHU = VᵀQV = IK , and S is the diagonal matrix of
GMD values.

3Allen et al. JASA, 2014 13 / 25



GMD Biplot

The GMD-biplot displays samples and variables using columns of U
and V

78% variation 
explained

35% variation 
explained

PCoA using UniFrac Δ
PCoA using X and UniFrac Δ; 

phyla (arrows) from GMD biplot
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Supervised Learning with GMD

I GMD generalizes SVD for doubly structured data
I Can thus use GMD for supervised learning, similar to PCR

• Suppose y = Xβ∗ + ε
• Let X = USVᵀ be the GMD of X w.r.t H and Q
• Sample scores are given by columns of US = XV
• For any J ⊂ {1, . . . , rank(X )}, let Υ = (US)J
• The GMDR estimator is

γ̂(J ) = arg min ‖y −Υγ‖2
H ,

β̂GMDR(J ) = (QV)J γ̂(J )
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GMD Regression

I Linear model y = Xβ∗ + ε

I Incorporating H and Q

y = USVᵀβ∗ + ε

I Coefficient β̂GMDR(J ) ∈ BGMD , where

BGMD = {β̂W = QVWS−1UᵀHy :W = diag(w1, . . . ,wK ),wj ≥ 0}.

Two examples of the weight matrix W are:

I W j = 1j∈J → β̂GMDR(J ),

I W = S2(S2 +λIn)−1 → β̂KPR = arg minβ{‖y −Xβ‖2
H +λ‖β‖2

Q−1}4

4Randolph et al. AOAS, 2018 16 / 25
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GMD Inference

I GMDR is good for prediction, but which covariates are
associated with the outcome?

I For β̂W ∈ BGMD ,

E[β̂W − β∗] = QV(W − I )Vᵀβ∗︸ ︷︷ ︸
estimation bias

+ θ∗ − β∗︸ ︷︷ ︸
projection bias5

I Correct the estimation and projection bias via an initial
estimator (Q = D∆Dᵀ)

β̃(λ) = arg min
β
{‖y−XDβ‖2

H+λ‖∆−1/2β‖1}, β̂init = Dβ̃(λ)

I Obtain inference for H0,j : β∗j = 0

5Bühlmann. 2013; Zhao & Shojaie, 2016 17 / 25
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GMD Inference

I We need to make the following assumptions:
I A compatibility assumption w.r.t Q and H
I β∗ is Q-smooth:

‖Q−1/2β∗‖0 = o{(n/ log p)r} for r ∈ (0, 1/2).

I However, no sparsity assumption on β∗

I Can characterize the detection level of the test under the
alternative
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Application to Microbiome Data

I Data from Yatsunenko et al. Nature. (2012)

I p = 149 and n = 100

I Q is derived from the patristic distance between each pair of
the tips of the phylogenetic tree

I H is derived from Enzyme Commision (EC) numbers.

19 / 25



GMD Improves Visualization of Samples
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Which Bacteria are Associated with Age?

I Many significant marginal associations6 (FDR=0.1)
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6Results from Yatsunenko et al. Nature. (2012) 21 / 25



Which Bacteria are Associated with Age?

I Significant associations from multivariate methods7 (FDR=0.1)

7Ridge test by Bühlmann (2013) returns 0 sig association. 22 / 25



Summary

Q = outcome y

(n x n)

X~
ß

n
sa

m
pl
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H = -½ J D J
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Summary

I Discussed visualization and regression based on GMD

I GMD is closely related to the duality8 between viewing the
data from the perspective of samples and variables

I Our framework
I encompasses classical methods, both unsupervised (PCA,

PCoA/MDS, biplots) and supervised (ridge, GLS) methods
I extends them to non-standard settings (multi-view data)

8Escoufier. 1977; de la Cruz & Holmes. AOAS, 2011 24 / 25
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Simulation Examples

I Data generated from linear model with p = 300 & n = 200
I Compare GMDI-k and GMDI-d with

I Low-dimension Projection Estimator (LDPE)9

I Ridge-based inference10

I Decorrelated score test (Dscore)11

I Non-sparse high-dimensional inference (Ns-hdi)12

I Grace test13

9van de Geer et al. 2014; Zhang & Zhang. 2014
10Bühlmann. 2013
11Ning & Liu. 2017
12Zhu & Bradic. 2018
13Zhao & Shojaie. 2015 26 / 25



Simulation Examples

I Setting 1: H = I, ‖Q−1/2β∗‖0 = 10 but β∗ is not sparse.
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Simulation Examples

I Setting 2: similar to Setting 1, but with Q perturbed.
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Simulation Examples

I Setting 3: H is block diagonal, Q is the same as in setting 1.
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