

Generalized Matrix Decomposition: From Exploratory Analysis to High-Dimensional Inference

Jing Ma

Department of Statistics, Texas A&M

15 Dec 2019

- ► $X = (x_{ij})_{n \times p}$ matrix of microbiome data for *n* samples and *p* taxa
- Due to differences in effort, often work with relative abundances

- Similarities among samples better captured by phylogenetic tree
- Many methods for capturing phylogenetic distances, e.g. UniFrac dist.

taxon presence/absence

- Similarities among samples better captured by phylogenetic tree
- Many methods for capturing phylogenetic distances, e.g. UniFrac dist.

- Similarities among samples better captured by phylogenetic tree
- Many methods for capturing phylogenetic distances, e.g. UniFrac dist.

- Similarities among samples better captured by phylogenetic tree
- The phylogenetic tree also captures similarities among taxa.

- Similarities among samples better captured by phylogenetic tree
- Alternatively, can consider information from metabolic pathways.

Microbiome Data Analysis

Need to capture

- Similarities among samples non-Euclidean (e.g. UniFrac distance)
- Similarities among taxa phylogenetic tree, pathway information, etc.

Microbiome Data Analysis

Need to capture

- Similarities among samples non-Euclidean (e.g. UniFrac distance)
- Similarities among taxa phylogenetic tree, pathway information, etc.
- Often use exploratory data analysis tools
 - PCoA (aka MDS)
 - DPCoA (Double PCoA)

Exploratory Analysis using PCoA

First recall PCA

u2

 u_1

Exploratory Analysis using PCoA

First recall PCA

Exploratory Analysis using PCoA

UniFrac PCoA

Exploratory Analysis using DPCoA

 DPCoA^1 based on phylogenetic tree

¹Pavoine et al. 2004; Purdom. AOAS, 2011

 $X \approx \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathsf{T}} + \boldsymbol{u}_2 \boldsymbol{v}_2^{\mathsf{T}}$

Biplots provide simultaneous visualization of samples and variables

Can also overlay outcome

$$X \approx u_1 v_1^{\mathsf{T}} + u_2 v_2^{\mathsf{T}}$$

Microbiome Data are Doubly Structured

Can we draw a biplot that accounts for the external structures?

²Satten et al. PLOS One, 2017

Can we draw a biplot that accounts for the external structures?

- Unfortunately, there is no biplot with PCoA because
 - PCA uses **X** and gives: $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}}$ (SVD)
 - PCoA uses Δ and only gives: US^2U^{\intercal} (no V)

Can we draw a biplot that accounts for the external structures?

- Unfortunately, there is no biplot with PCoA because
 - PCA uses **X** and gives: $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}}$ (SVD)
 - ▶ PCoA uses \triangle and only gives: US^2U^{\intercal} (no \lor)
- ► Existing approaches² in the field are approximate/add hoc.

Can we draw a biplot that accounts for the external structures?

• SVD gives
$$\mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}}$$
 by solving

```
\label{eq:constraint} \begin{split} & \arg\min_{\boldsymbol{U},\boldsymbol{S},\boldsymbol{V}} \|\boldsymbol{X} - \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{\mathsf{T}}\|_F\\ & \boldsymbol{U}, \boldsymbol{S}, \boldsymbol{V} \end{split} where \|\boldsymbol{A}\|_F = \operatorname{trace}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}).
```

³Allen et al. JASA, 2014

Can we draw a biplot that accounts for the external structures?

• SVD gives $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}}$ by solving

$$\underset{\boldsymbol{U},\boldsymbol{S},\boldsymbol{V}}{\arg\min} \| \boldsymbol{X} - \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\mathsf{T}} \|_{F}$$

where $||A||_F = \operatorname{trace}(A^{\mathsf{T}}A)$.

► Consider instead a general norm to incorporate *H* and *Q*:

$$\|oldsymbol{X} - oldsymbol{U}oldsymbol{S}oldsymbol{V}^{\intercal}\|_{oldsymbol{H},oldsymbol{Q}}$$

where $||A||_{H,Q} = \operatorname{trace}(A^{\mathsf{T}} H A Q).$

³Allen et al. JASA, 2014

Can we draw a biplot that accounts for the external structures?

• SVD gives $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}}$ by solving

$$\underset{\boldsymbol{U},\boldsymbol{S},\boldsymbol{V}}{\arg\min} \| \boldsymbol{X} - \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\mathsf{T}} \|_{F}$$

where $||A||_F = \operatorname{trace}(A^{\mathsf{T}}A)$.

► Consider instead a general norm to incorporate *H* and *Q*:

$$\| \boldsymbol{X} - \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\mathsf{T}} \|_{\boldsymbol{H}, \boldsymbol{Q}}$$

where $||A||_{H,Q} = \operatorname{trace}(A^{\mathsf{T}} H A Q).$

The <u>GMD</u> (Gen'zd Matrix Decomp³) gives X = USV[↑] such that U[↑]HU = V[↑]QV = I_K, and S is the diagonal matrix of GMD values.

³Allen et al. JASA, 2014

GMD Biplot

The GMD-biplot displays samples and variables using columns of ${\cal U}$ and ${\cal V}$

- GMD generalizes SVD for doubly structured data
- Can thus use GMD for supervised learning, similar to PCR

- GMD generalizes SVD for doubly structured data
- ► Can thus use GMD for supervised learning, similar to PCR
 - Suppose $y = \mathbf{X}\beta^* + \varepsilon$

- GMD generalizes SVD for doubly structured data
- ► Can thus use GMD for supervised learning, similar to PCR
 - Suppose $y = \mathbf{X}\beta^* + \varepsilon$
 - Let $\mathbf{X} = \mathcal{USV}^{\mathsf{T}}$ be the GMD of \mathbf{X} w.r.t \mathbf{H} and \mathbf{Q}

- GMD generalizes SVD for doubly structured data
- ► Can thus use GMD for supervised learning, similar to PCR
 - Suppose $y = \mathbf{X}\beta^* + \varepsilon$
 - Let $\mathbf{X} = \mathcal{USV}^{\mathsf{T}}$ be the GMD of \mathbf{X} w.r.t \mathbf{H} and \mathbf{Q}
 - Sample scores are given by columns of $\mathcal{US} = \mathbf{XV}$
 - For any $\mathcal{J} \subset \{1, \dots, \mathsf{rank}(\boldsymbol{X})\}$, let $\Upsilon = (\mathcal{US})_{\mathcal{J}}$

- GMD generalizes SVD for doubly structured data
- ► Can thus use GMD for supervised learning, similar to PCR
 - Suppose $y = \mathbf{X}\beta^* + \varepsilon$
 - Let $\mathbf{X} = \mathcal{USV}^{\mathsf{T}}$ be the GMD of \mathbf{X} w.r.t \mathbf{H} and \mathbf{Q}
 - Sample scores are given by columns of $\mathcal{US} = \mathbf{XV}$
 - For any $\mathcal{J} \subset \{1, \dots, \mathsf{rank}(\boldsymbol{X})\}$, let $\Upsilon = (\mathcal{US})_{\mathcal{J}}$
 - The GMDR estimator is

$$\hat{\gamma}(\mathcal{J}) = \arg \min \|y - \Upsilon \gamma\|_{H}^{2},$$
$$\hat{\beta}_{GMDR}(\mathcal{J}) = (\mathcal{QV})_{\mathcal{J}}\hat{\gamma}(\mathcal{J})$$

GMD Regression

- Linear model $y = \mathbf{X}\beta^* + \varepsilon$
- Incorporating H and Q

$$\mathbf{y} = \mathcal{U}\mathcal{S}\mathcal{V}^{\mathsf{T}}\beta^* + \varepsilon$$

• Coefficient
$$\hat{eta}_{GMDR}(\mathcal{J}) \in \mathcal{B}_{GMD}$$
, where

 $\mathcal{B}_{GMD} = \{ \hat{\beta}^{\mathcal{W}} = \mathbf{Q} \mathcal{V} \mathcal{W} \mathcal{S}^{-1} \mathcal{U}^{\mathsf{T}} \mathbf{H} y : \mathcal{W} = \mathsf{diag}(w_1, \dots, w_K), w_j \ge 0 \}.$

GMD Regression

- Linear model $y = \mathbf{X}\beta^* + \varepsilon$
- Incorporating H and Q

$$\mathbf{y} = \mathcal{USV}^{\mathsf{T}}\beta^* + \varepsilon$$

• Coefficient
$$\hat{eta}_{GMDR}(\mathcal{J}) \in \mathcal{B}_{GMD}$$
, where

 $\mathcal{B}_{GMD} = \{ \hat{\beta}^{\mathcal{W}} = \mathbf{Q} \mathcal{V} \mathcal{W} \mathcal{S}^{-1} \mathcal{U}^{\mathsf{T}} \mathbf{H} y : \mathcal{W} = \mathsf{diag}(w_1, \dots, w_K), w_j \ge 0 \}.$

Two examples of the weight matrix $\mathcal W$ are:

$$\blacktriangleright W_j = \mathbf{1}_{j \in \mathcal{J}} \to \hat{\beta}_{GMDR}(\mathcal{J}),$$

⁴Randolph et al. AOAS, 2018

GMD Regression

- Linear model $y = \mathbf{X}\beta^* + \varepsilon$
- Incorporating H and Q

$$\mathbf{y} = \mathcal{USV}^{\mathsf{T}}\beta^* + \varepsilon$$

• Coefficient
$$\hat{eta}_{GMDR}(\mathcal{J}) \in \mathcal{B}_{GMD}$$
, where

 $\mathcal{B}_{GMD} = \{ \hat{\beta}^{\mathcal{W}} = \mathbf{Q} \mathcal{V} \mathcal{W} \mathcal{S}^{-1} \mathcal{U}^{\mathsf{T}} \mathbf{H} y : \mathcal{W} = \mathsf{diag}(w_1, \dots, w_K), w_j \ge 0 \}.$

Two examples of the weight matrix $\mathcal W$ are:

$$\mathcal{W}_{j} = \mathbf{1}_{j \in \mathcal{J}} \to \hat{\beta}_{GMDR}(\mathcal{J}),$$

$$\mathcal{W} = \mathcal{S}^{2}(\mathcal{S}^{2} + \lambda I_{n})^{-1} \to \hat{\beta}_{KPR} = \arg\min_{\beta} \{ \|y - \mathbf{X}\beta\|_{\mathbf{H}}^{2} + \lambda \|\beta\|_{\mathbf{Q}^{-1}}^{2} \}^{4}$$

⁴Randolph et al. AOAS, 2018

GMDR is good for prediction, but which covariates are associated with the outcome?

⁵Bühlmann. 2013; Zhao & Shojaie, 2016

GMDR is good for prediction, but which covariates are associated with the outcome?

• For
$$\hat{\beta}^{\mathcal{W}} \in \mathcal{B}_{GMD}$$
,

$$\mathbb{E}[\hat{\beta}^{\mathcal{W}} - \beta^*] = \underbrace{\mathcal{QV}(\mathcal{W} - \mathbf{I})\mathcal{V}^{\mathsf{T}}\beta^*}_{\text{estimation bias}} + \underbrace{\theta^* - \beta^*}_{\text{projection bias}^5}$$

⁵Bühlmann. 2013; Zhao & Shojaie, 2016

GMDR is good for prediction, but which covariates are associated with the outcome?

• For
$$\hat{\beta}^{\mathcal{W}} \in \mathcal{B}_{GMD}$$
,

$$\mathbb{E}[\hat{\beta}^{\mathcal{W}} - \beta^*] = \underbrace{\mathcal{QV}(\mathcal{W} - \mathbf{I})\mathcal{V}^{\mathsf{T}}\beta^*}_{\text{estimation bias}} + \underbrace{\theta^* - \beta^*}_{\text{projection bias}^5}$$

• Correct the estimation and projection bias via an initial estimator $(Q = D\Delta D^{T})$

$$\tilde{\beta}(\lambda) = \arg\min_{\beta} \{ \| y - \boldsymbol{X} \boldsymbol{D} \beta \|_{\boldsymbol{H}}^{2} + \lambda \| \Delta^{-1/2} \beta \|_{1} \}, \quad \hat{\beta}^{init} = \boldsymbol{D} \tilde{\beta}(\lambda)$$

⁵Bühlmann. 2013; Zhao & Shojaie, 2016

GMDR is good for prediction, but which covariates are associated with the outcome?

• For
$$\hat{\beta}^{\mathcal{W}} \in \mathcal{B}_{GMD}$$
,

$$\mathbb{E}[\hat{\beta}^{\mathcal{W}} - \beta^*] = \underbrace{\mathcal{QV}(\mathcal{W} - \mathbf{I})\mathcal{V}^{\mathsf{T}}\beta^*}_{\text{estimation bias}} + \underbrace{\theta^* - \beta^*}_{\text{projection bias}^5}$$

• Correct the estimation and projection bias via an initial estimator $(Q = D\Delta D^{T})$

$$\tilde{\beta}(\lambda) = \arg\min_{\beta} \{ \| y - \mathbf{X} D\beta \|_{\mathbf{H}}^2 + \lambda \| \Delta^{-1/2}\beta \|_1 \}, \quad \hat{\beta}^{init} = D\tilde{\beta}(\lambda)$$

• Obtain inference for $H_{0,j}: \beta_j^* = 0$

⁵Bühlmann. 2013; Zhao & Shojaie, 2016

- ▶ We need to make the following assumptions:
 - A compatibility assumption w.r.t Q and H
 - β^* is **Q**-smooth:

$$\|\mathbf{Q}^{-1/2}\beta^*\|_0 = o\{(n/\log p)^r\}$$
 for $r \in (0, 1/2)$.

- ▶ We need to make the following assumptions:
 - A compatibility assumption w.r.t Q and H
 - β^* is **Q**-smooth:

$$\|\mathbf{Q}^{-1/2}\beta^*\|_0 = o\{(n/\log p)^r\}$$
 for $r \in (0, 1/2)$.

• However, no sparsity assumption on β^*

- ▶ We need to make the following assumptions:
 - A compatibility assumption w.r.t Q and H
 - β^* is **Q**-smooth:

$$\|\mathbf{Q}^{-1/2}\beta^*\|_0 = o\{(n/\log p)^r\}$$
 for $r \in (0, 1/2)$.

- However, no sparsity assumption on β^*
- Can characterize the detection level of the test under the alternative

- ▶ Data from Yatsunenko et al. Nature. (2012)
- ▶ *p* = 149 and *n* = 100
- Q is derived from the patristic distance between each pair of the tips of the phylogenetic tree
- ► *H* is derived from Enzyme Commision (EC) numbers.

GMD Improves Visualization of Samples

Which Bacteria are Associated with Age?

Many significant marginal associations⁶ (FDR=0.1)

⁶Results from Yatsunenko et al. Nature. (2012)

 $21 \, / \, 25$

Which Bacteria are Associated with Age?

Significant associations from multivariate methods⁷ (FDR=0.1)

⁷Ridge test by Bühlmann (2013) returns 0 sig association.

Summary

$$\mathbf{H} = -\frac{1}{2} J \Delta J$$

			·.				.,				
	32			11	H						
	ч.		ч.								
22				ш	10						
				11	11						
			. e .	.,	ц	ы.					
	-		а.	14	14	22					
	-448		-8				24				
			8								
12	112	611	- 11	22							
****	-		-	1		25	mi	66		86	ł
						3E.	221	122		ц.,	
						銌		t =		i, e	
						10	211	198	2.5		
						τĒ			10	16	
			-			44	-44	ç	62	÷	ł
						-					

Summary

- Discussed visualization and regression based on GMD
- GMD is closely related to the duality⁸ between viewing the data from the perspective of samples and variables

$$\begin{array}{c} \mathbb{R}^p \xleftarrow{X^\top} \mathbb{R}^{n^*} \\ \mathbb{Q} \downarrow & \uparrow \mathbb{H} \\ \mathbb{R}^{p^*} \xrightarrow{X} \mathbb{R}^n \end{array}$$

- Our framework
 - encompasses classical methods, both unsupervised (PCA, PCoA/MDS, biplots) and supervised (ridge, GLS) methods
 - extends them to non-standard settings (multi-view data)

$$\begin{array}{c} \mathbb{R}^{p} \xleftarrow{X^{\top}} \mathbb{R}^{n^{*}} \xrightarrow{Z^{\top}} \mathbb{R}^{q} \\ \mathbb{Q} \downarrow & \uparrow_{H} \qquad \downarrow_{R} \\ \mathbb{R}^{p^{*}} \xrightarrow{X} \mathbb{R}^{n} \xleftarrow{Z} \mathbb{R}^{q^{*}} \end{array}$$

⁸Escoufier. 1977; de la Cruz & Holmes. AOAS, 2011

Aknowledgement

Yue Wang

Ali Shojaie

Tim Randolph

- ▶ The GMD-biplot and its application to microbiome data. *mSystems*. 2019
- Generalized matrix decomposition: estimation and inference for two-way structured data. 2019+

Thank You!

- Data generated from linear model with p = 300 & n = 200
- Compare GMDI-k and GMDI-d with
 - Low-dimension Projection Estimator (LDPE)⁹
 - Ridge-based inference¹⁰
 - Decorrelated score test (Dscore)¹¹
 - Non-sparse high-dimensional inference (Ns-hdi)¹²
 - Grace test¹³

⁹van de Geer et al. 2014; Zhang & Zhang. 2014
¹⁰Bühlmann. 2013
¹¹Ning & Liu. 2017
¹²Zhu & Bradic. 2018
¹³Zhao & Shojaie. 2015

• Setting 1: $\mathbf{H} = \mathbf{I}, \|\mathbf{Q}^{-1/2}\beta^*\|_0 = 10$ but β^* is not sparse.

Setting 2: similar to Setting 1, but with Q perturbed.

Setting 3: *H* is block diagonal, *Q* is the same as in setting 1.

