

Variance Components Estimation for Linear Mixed Models

Jing Ma

Public Health Sciences Division Fred Hutch Cancer Research Center

> Banff Workshop February 5, 2019

Heritability Estimation

The ACE model

$$
y = \mathbf{X}\beta + \gamma + c + e
$$

$$
\gamma \sim N(0, \sigma_{\gamma}^2 A), \quad c \sim N(0, \sigma_c^2 C), \quad e \sim N(0, \sigma_e^2 I_n)
$$

- \blacktriangleright *y*: $n \times 1$ vector of quantitative traits
- \blacktriangleright *A*: $n \times n$ genetic related matrix
- \triangleright *C*: $n \times n$ matrix for shared environment

$$
\blacktriangleright \; h^2 = \sigma_\gamma^2 / (\sigma_\gamma^2 + \sigma_c^2 + \sigma_e^2)
$$

Scientific Question

Whether a *genetic/metabolic pathway* is involved in responding to changes in environmental conditions or in specific cell functions.

Scientific Question

Whether a *genetic/metabolic pathway* is involved in responding to changes in environmental conditions or in specific cell functions.

 \blacktriangleright Reduce the complexity; more explanatory power.

Pathway Enrichment Analysis

The NetGSA model¹ (for $t = 1, 2, i = 1, \ldots, n_t$)

$$
y_i^{(t)} = \frac{\mu^{(t)} + \gamma_i^{(t)}}{\gamma^{(t)} \sim N(0, A_t)} + e_i^{(t)}
$$

$$
e_i^{(t)} \sim N(0, \sigma_e^2 I_p)
$$

 \blacktriangleright $y_i^{(t)}$: $p \times 1$ vector of observation for individual *i* in group *t*

- \blacktriangleright A_t^{-1} : $p \times p$ network information matrix
- ► Test statistic for $H_0: \mu_G^{(1)} = \mu_G^{(2)}$ depends on the variance components.

¹ Ma J, et al. Bioinformatics. 2016

VC Estimation with REML

Pros

 \blacktriangleright Statistically efficient

Cons

- **•** Need to invert $n \times n$ matrices (or $p \times p$ matrices in NetGSA) \rightarrow computationally expensive, e.g.
	- \blacktriangleright $n > 100K$ in heritability estimation
	- \blacktriangleright $p \approx 3K$ in enrichment analysis

Haseman-Elston Regression²

The residual after removing fixed effects is

$$
\varepsilon = \mathbf{y} - \mathbf{X}\boldsymbol{\beta} = \boldsymbol{\gamma} + \mathbf{c} + \mathbf{e},
$$

whose second moment is

$$
\mathbb{E}(\varepsilon\varepsilon')=\sigma_{\gamma}^2A+\sigma_{c}^2C+\sigma_{e}^2I_n.
$$

² Sofer T. Stat. Appl. Genet. Mol. Biol. 2017

Haseman-Elston Regression²

The residual after removing fixed effects is

$$
\varepsilon = \mathbf{y} - \mathbf{X}\boldsymbol{\beta} = \boldsymbol{\gamma} + \mathbf{c} + \mathbf{e},
$$

whose second moment is

$$
\mathbb{E}(\varepsilon\varepsilon')=\sigma_{\gamma}^2A+\sigma_{c}^2C+\sigma_{e}^2I_n.
$$

Let Vec(*A*) denote the upper triangular part of a matrix *A* including the diagonal. The HE method solves for σ_j^2 by regressing

$$
\widetilde{Y} = \text{Vec}(\widehat{\varepsilon}\widehat{\varepsilon}') \in \mathbb{R}^{n^*}, \quad n^* = \frac{n(n+1)}{2}
$$

on the design matrix

$$
\widetilde{X} = [\text{Vec}(I_n), \text{Vec}(A), \text{Vec}(C)] \in \mathbb{R}^{n^* \times 3}.
$$

² Sofer T. Stat. Appl. Genet. Mol. Biol. 2017

Haseman-Elston Regression

Pros

 \triangleright Only need to invert a 3 \times 3 matrix

Cons

- \blacktriangleright May get negative estimates
- **Computational cost is** $O(n^2)$ **in the ACE model and** $O(np^2)$ **in NetGSA** \rightarrow can be inefficient if *n* and *p* are large

Negative estimates

\downarrow Use non-negative least squares (NNLS)

NNLS

NNLS solves for the variance components by minimizing

$$
\frac{1}{n^*}\left\{\theta'\widetilde{X}'\widetilde{X}\theta-2\theta'\widetilde{X}'\widetilde{Y}\right\},\quad \text{s.t. } \theta\geq 0,
$$

where

$$
\frac{1}{n^*}\widetilde{X}'\widetilde{X} = \frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}'_i\widetilde{X}_i,
$$

$$
\frac{1}{n^*}\widetilde{X}'\widetilde{Y} = \frac{1}{n^*}\sum_{i=1}^{n^*}\widetilde{X}'_i\widetilde{Y}_i.
$$

- In NNLS depends only on the average products between rows of \widetilde{X} and between rows of \widetilde{X} and \widetilde{Y} .
- \triangleright We can approximate these values by subsampling rows of \widetilde{X} and \widetilde{Y} multiple times to get robust NNLS estimates.

Subsampling for NetGSA

 $Y = \mu + \gamma + \varepsilon$

where

 \triangleright Var(γ) has $n = n_1 + n_2$ diagonal block.

 \triangleright We can subsample observations and genes simultaneously!

- \triangleright Classical CLT fails because entries in \widetilde{Y} are dependent
- \triangleright We evoke the CLT for weakly dependent processes to conclude consistency for the HE/REHE estimator

Simulations: Setup

▶ 8 subnetworks with varying degrees of enrichment

○ set 1 ○ set 2 ○ set 3 ● set 4 ● set 5 ● set 6 ● set 7 ● set 8

Simulations: VC Estimation

$$
\blacktriangleright n_1 = n_2 = 200, \sigma_{\gamma}^2 = \sigma_{\epsilon}^2 = 1
$$

Simulations: Power

$$
p = 800, n_1 = n_2 = 200, \sigma_{\gamma}^2 = \sigma_{\epsilon}^2 = 1, \mu^{(2)} - \mu^{(1)} = 0.1
$$

- \triangleright Gene expression from 160 normal vs 264 tumor samples
- $p = 2800$ genes with Entrez IDs
- \triangleright Network topology information extracted from BioGrid
- Analysis of 96 KEGG signaling pathways

TCGA Prostate Cancer Pathway Analysis

► Each dot represents one pathway; FDR p-value threshold at 0.01

Extensions

The ACE model with $\mathbf{X} \in \mathbb{R}^{n \times m}$

$$
y = \mathbf{X}\beta + \gamma + c + e.
$$

Let *L* be the $(n - m) \times n$ matrix with its rows spanning the kernel space of **X**'. Then

$$
\mathbb{E}[L|yy'|L'] = L(\sigma_{\gamma}^2 A + \sigma_c^2 C + \sigma_e^2 I_n)L'.
$$

Extensions

The ACE model with $\mathbf{X} \in \mathbb{R}^{n \times m}$

$$
y = \mathbf{X}\beta + \gamma + c + e.
$$

Let *L* be the $(n - m) \times n$ matrix with its rows spanning the kernel space of **X**'. Then

$$
\mathbb{E}[L|yy'|L'] = L(\sigma_{\gamma}^2 A + \sigma_c^2 C + \sigma_e^2 I_n)L'.
$$

 \rightarrow yy' is a sample outer product derived from the Euclidean distance.

Extensions

The ACE model with $\mathbf{X} \in \mathbb{R}^{n \times m}$

$$
y = \mathbf{X}\beta + \gamma + c + e.
$$

Let *L* be the $(n - m) \times n$ matrix with its rows spanning the kernel space of **X**'. Then

$$
\mathbb{E}[L]yy'\ L'] = L(\sigma_{\gamma}^2 A + \sigma_c^2 C + \sigma_{e}^2 I_n)L'.
$$

- \rightarrow yy' is a sample outer product derived from the Euclidean distance.
- If we do not observe y but have an outer product matrix M defined from a distance measure suitable for microbiome data, we can detect heritable microbial communities by

$$
\mathbb{E}[L \, M \, L'] = L(\sigma_{\gamma}^2 A + \sigma_{c}^2 C + \sigma_{e}^2 I_n)L'.
$$

Collaborators

- \blacktriangleright Kun Yue (UW)
- \blacktriangleright Ali Shojaie (UW)