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Heritability Estimation

The ACE model
y = X� + � + c + e

� ⇠ N(0,�2
�A), c ⇠ N(0,�2

c C), e ⇠ N(0,�2
eIn)

I y : n ⇥ 1 vector of quantitative traits

I A: n ⇥ n genetic related matrix

I C: n ⇥ n matrix for shared environment

I h2 = �2
�/(�

2
� + �2

c + �2
e)
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Pathway Enrichment Analysis

Scientific Question
Whether a genetic/metabolic pathway is involved in responding to changes in
environmental conditions or in specific cell functions.

Condition 1 Condition 2

Pathway 
Database

Method
List of 

significant 
pathways

I Reduce the complexity; more explanatory power.
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Pathway Enrichment Analysis

The NetGSA model1 (for t = 1, 2, i = 1, . . . , nt )

y (t)
i = µ(t) + �(t)

i + e(t)
i

�(t) ⇠N(0,At)

e(t)
i ⇠N(0,�2

eIp)

I y (t)
i : p ⇥ 1 vector of observation for individual i in group t

I A�1
t : p ⇥ p network information matrix

I Test statistic for H0 : µ(1)
G = µ(2)

G depends on the variance components.

1 Ma J, et al. Bioinformatics. 2016
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VC Estimation with REML

Pros
I Statistically efficient

Cons
I Need to invert n ⇥ n matrices (or p ⇥ p matrices in NetGSA) !

computationally expensive, e.g.

I n > 100K in heritability estimation

I p ⇡ 3K in enrichment analysis
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Haseman-Elston Regression2

The residual after removing fixed effects is

" = y � X� = � + c + e,

whose second moment is

E(""0) =�2
�A + �2

c C + �2
eIn.

Let Vec(A) denote the upper triangular part of a matrix A including the
diagonal. The HE method solves for �2

j by regressing

eY = Vec("̂"̂0) 2 Rn⇤ , n⇤ =
n(n + 1)

2

on the design matrix

eX = [Vec(In),Vec(A),Vec(C)] 2 Rn⇤⇥3.

2 Sofer T. Stat. Appl. Genet. Mol. Biol. 2017
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Haseman-Elston Regression

Pros
I Only need to invert a 3 ⇥ 3 matrix

Cons
I May get negative estimates

I Computational cost is O(n2) in the ACE model and O(np2) in NetGSA !
can be inefficient if n and p are large
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Restricted HE Regression

Negative estimates

#

Use non-negative least squares (NNLS)
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NNLS

NNLS solves for the variance components by minimizing

1
n⇤

n

✓0eX 0
eX✓ � 2✓0eX 0

eY
o

, s.t . ✓ � 0,

where
1
n⇤

eX 0
eX =

1
n⇤

n⇤
X

i=1

eX 0
i
eXi ,

1
n⇤

eX 0
eY =

1
n⇤

n⇤
X

i=1

eX 0
i
eYi .
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Subsampling

I NNLS depends only on the average products between rows of eX and
between rows of eX and eY .

I We can approximate these values by subsampling rows of eX and eY
multiple times to get robust NNLS estimates.
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Subsampling for NetGSA

Y = µ+ � + "

where

Y =

0

B
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I Var(�) has n = n1 + n2 diagonal block.

I We can subsample observations and genes simultaneously!
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Consistency

I Classical CLT fails because entries in eY are dependent

I We evoke the CLT for weakly dependent processes to conclude
consistency for the HE/REHE estimator
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Simulations: Setup

I 8 subnetworks with varying degrees of enrichment
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Simulations: VC Estimation

I n1 = n2 = 200,�2
� = �2

✏ = 1
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Simulations: Power

I p = 800, n1 = n2 = 200,�2
� = �2

✏ = 1, µ(2) � µ(1) = 0.1
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TCGA Prostate Cancer Pathway Analysis

I Gene expression from 160 normal vs 264 tumor samples

I p = 2800 genes with Entrez IDs

I Network topology information extracted from BioGrid

I Analysis of 96 KEGG signaling pathways
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TCGA Prostate Cancer Pathway Analysis

I Each dot represents one pathway; FDR p-value threshold at 0.01
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Extensions

The ACE model with X 2 Rn⇥m

y = X� + � + c + e.

Let L be the (n � m)⇥ n matrix with its rows spanning the kernel space of X0.
Then

E[L yy 0 L0] = L(�2
�A + �2

c C + �2
eIn)L0.

I yy 0 is a sample outer product derived from the Euclidean distance.

I If we do not observe y but have an outer product matrix M defined from
a distance measure suitable for microbiome data, we can detect
heritable microbial communities by

E[L M L0] = L(�2
�A + �2

c C + �2
eIn)L0.
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