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Networks
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Networks

Question 1: What is a microbial network?
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Differential network analysis
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The microbiome data

16S rRNA gene sequencing
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The microbiome data

I Microbiome data are compositional.
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The microbiome data

I The compositional vector is very sparse.
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Existing models for microbial relationships

I Dissimilarity: ReBoot (Faust et al. 2012).

I Correlation: SparCC (Friedman and Alm 2012), MENAP (Deng et
al. 2012), CCLasso (Fang et al. 2015), REBACCA (Ban et al.
2015).

I Probabilistic graphical models: SPIEC-EASI (Kurtz et al. 2015),
MINT (Biswas et al. 2016).

I Limitations: marginal relationships, permutation-based significance
test, zeros replaced with a pseudocount.
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Microbial conditional dependency relationships

We want a model that

I captures the conditional dependency relationships among microbes,

I address the sparsity issue,

I infers differential network with false discovery rate control.
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Our framework: binary Markov network (Ising model)
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Our framework: binary Markov network (Ising model)

I Joint distribution PΘ(X ) ∝ exp
{∑

1≤r<t≤p XrXtθrt

}
.

I Conditional independence

1

2 3

Θ =

 ? θ12 0
θ21 ? θ23

0 θ32 ?


I Harris. Ecology (2016): small p ≤ 20
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Estimation of the Ising model

I Maximum likelihood: ok for small p, but intractable for large p:

PΘ(X ) ∝ exp

∑
(r ,t)

XrXtθrt



I Nodewise (penalized) logistic regression1 for large p:

P(Xr | X−r ) =
exp(Xr

∑
j 6=r Xjθrj)

exp(−Xr

∑
j 6=r Xjθrj) + exp(Xr

∑
j 6=r Xjθrj)

.

1Ravikumar et al. Ann. Stat. (2010)
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Inference beyond estimation

I Inference of a single network

I done for Gaussian graphical model (GGM)2, but not for Ising model!

I Two-sample (and multi-sample) inference

I done for GGM3, but not for Ising model!

2Liu. AOS (2013)
3Xia, Cai and Cai. Biometrika (2015)
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Inference of differential Markov network

1

2

𝐃𝐚𝐭𝐚𝐓𝐫𝐮𝐞	𝐧𝐞𝐭𝐰𝐨𝐫𝐤𝐬
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Inference of differential Markov network

1

2

Global	testing
𝐻.: Θ1 = Θ3

𝐃𝐚𝐭𝐚𝐓𝐫𝐮𝐞	𝐧𝐞𝐭𝐰𝐨𝐫𝐤𝐬
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Inference of differential Markov network
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Inference of differential Markov network

1

2

Differential 
network

Global testing
𝐻0: Θ1 = Θ2

𝑯𝟎 is NOT 
rejected

𝑯𝟎 is rejected

Multiple testing
𝐻0,𝑟𝑡: Θ𝑟𝑡,1 − Θ𝑟𝑡,2 = 0, 1 ≤ 𝑟 < 𝑡 ≤ 𝑝

DONE

𝐃𝐚𝐭𝐚𝐓𝐫𝐮𝐞 𝐧𝐞𝐭𝐰𝐨𝐫𝐤𝐬
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Global testing H0 : Θ1 = Θ2

H0 : max
1≤r<t≤p

|θrt,1 − θrt,2| = 0.

Suppose we have good estimators θ̌rt,k and their variances šrt,k . Define

Wrt =
θ̌rt,1 − θ̌rt,2√

šrt,1/n1 + šrt,2/n2

.

The test statistic for H0 is

max
1≤r<t≤p

W 2
rt .

Intuition:

I max statistic is most powerful against sparse alternatives.
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What is a good estimator for Θk?

I Nodewise penalized logistic regression for large p.

I Easy to implement, but the estimator is biased!

I Solution: debiasing via projection
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Debiasing the Lasso via projection4

I Y = Zβ + ε,Z ∈ Rn×p.

I Projecting Y onto v ∈ Rn yields

β lin
r =

v ′Y

v ′Zr
= βr +

v ′ε

v ′Zr︸ ︷︷ ︸
variance

+
∑
j :j 6=r

v ′Zjβj
v ′Zr︸ ︷︷ ︸

bias

.

I The debiased estimator (given β̂) is

β̌r = β lin
r − b̂ias = β̂r +

v ′(Y − Zβ̂)

v ′Zr
.

I For an optimal direction v , β̌r ≈ βr+variance.

4Zhang and Zhang, JRSSB (2014)
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Solution for the Ising model

I Debiasing via projection and local Taylor expansion of

Xr = ḟ (X−rθr ) + εr ,

where f (u) = log(eu + e−u) and εr is sub-Gaussian.

I The debiased estimator θ̌rt satisfies

√
n(θ̌rt − θ∗rt)→ N (0, srt).
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Global testing procedure

Step 1 Given presence/absence data X and Y , obtain debiased θ̌rt,k (and šrt,k)
for 1 ≤ r < t ≤ p and k = 1, 2.

Step 2 For 1 ≤ r < t ≤ p, calculate Wrt

Wrt =
θ̌rt,1 − θ̌rt,2√

šrt,1/n1 + šrt,2/n2

.

Step 3 Form the test statistic
Mn,p = max

1≤r<t≤p
W 2

rt .

Step 4 Reject H0 if Mn,p is large.
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Theory: global testing

Test statistic
Mn,p = max

1≤r<t≤p
W 2

rt .

Theorem (M, Xia, Cai and Li)
Under the null and some regularity conditions, for any z ∈ R,

Mn,p − 4 log p + log log p → Type I extreme value distribution,

as n1, n2, p →∞.

Intuition:

I Wrt → N (0, 1) under the null.

I Wrt ’s are weakly dependent under mild assumptions.
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Simulation results: type I error

I p = 100,Θ1 = Θ2 = Θ0.

I Generate data {X (i)}ni=1 ∼ PΘ1 and {Y (i)}ni=1 ∼ PΘ2 by Gibbs sampling.

I Run global testing with α = 5%.
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Simulation results: power

I p = 100,Θ1 = Θ0 −∆,Θ2 = Θ0 + ∆ where ‖∆‖0 = 10.

I Generate data {X (i)}ni=1 ∼ PΘ1 and {Y (i)}ni=1 ∼ PΘ2 by Gibbs sampling.

I Run global testing with α = 5%.
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Inference of differential Markov network

1

2

Differential 
network

Global testing
𝐻0: Θ1 = Θ2

𝑯𝟎 is rejected

Multiple testing
𝐻0,𝑟𝑡: Θ𝑟𝑡,1 − Θ𝑟𝑡,2 = 0, 1 ≤ 𝑟 < 𝑡 ≤ 𝑝

𝐃𝐚𝐭𝐚𝐓𝐫𝐮𝐞 𝐧𝐞𝐭𝐰𝐨𝐫𝐤𝐬
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Multiple testing

H0,rt : θrt,1 − θrt,2 = 0, 1 ≤ r < t ≤ p.

I Test statistic for individual hypothesis:

Wrt =
θ̌rt,1 − θ̌rt,2√

šrt,1/n1 + šrt,2/n2

→null N (0, 1).

I Reject H0,rt if |Wrt | ≥ τ .

Q: how to choose τ to ensure false discovery rate control?
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What is the FDR?

Challenge: for any given τ

I Number of rejections: R(τ) =
∑

1≤r<t≤p I (|Wrt | ≥ τ).

I Number of false rejections: R0(τ) =
∑

(r ,t)∈H0
I (|Wrt | ≥ τ).

I Need to control

FDR(τ) := E [FDP(τ)] , FDP(τ) :=
R0(τ)

R(τ) ∨ 1
.
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What is the FDR?

Solution:

I Wrt ’s are only weakly dependent under some mild assumptions.

I R0(τ) =
∑

(r,t)∈H0
I (|Wrt | ≥ τ) ≈ sum of i.i.d. random variables

R0(τ)

|H0|
≈ 2{1− Φ(τ)}, where Φ(·) is c.d.f. of N (0, 1).

I Assuming sparsity, number of true nulls |H0| ≈ (p2 − p)/2.

I We thus have

F̂DP(τ) =
2{1− Φ(τ)}(p2 − p)/2

R(τ) ∨ 1
.
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Multiple testing procedure

Step 1 Given presence/absence data X and Y , obtain debiased θ̌rt,k (and šrt,k)
for 1 ≤ r < t ≤ p and k = 1, 2.

Step 2 For 1 ≤ r < t ≤ p, calculate Wrt

Wrt =
θ̌rt,1 − θ̌rt,2√

šrt,1/n1 + šrt,2/n2

.

Step 3 Find τ̂

τ̂ = inf{0 ≤ τ ≤
√

4 log p − 2 log log p : F̂DP(τ) ≤ α}.

If the above τ̂ does not exist, τ̂ =
√

4 log p.

Step 4 Reject H0,rt if Wrt ≥ τ̂ for 1 ≤ r < t ≤ p.

30 / 40
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for 1 ≤ r < t ≤ p and k = 1, 2.

Step 2 For 1 ≤ r < t ≤ p, calculate Wrt

Wrt =
θ̌rt,1 − θ̌rt,2√
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Theory: multiple testing

Theorem (M, Xia, Cai and Li)
Let q0 = |H0| and q = (p2 − p)/2. Under some regularity conditions, our
multiple testing procedure asymptotically controls the false discovery
rate, i.e.

FDR(τ̂)

αq0/q
→ 1,

FDP(τ̂)

αq0/q
→ 1,

as n1, n2, p →∞.
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Simulation results

I p = 100,Θ1 = Θ0 −∆,Θ2 = Θ0 + ∆ where ‖∆‖0 = 0.04 ·
(
p
2

)
.

I Generate data {X (i)}ni=1 ∼ PΘ1 and {Y (i)}ni=1 ∼ PΘ2 by Gibbs sampling.

I Run multiple testing with α = 10%.
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Gut microbiome in UK twins

Fig: Goodrich et al. Cell Host & Microbe.
(2016)

Data

I 16S rRNA sequencing of the gut
microbiome.

I Very rare bacterial genera5were
removed, leaving p = 59.

I Only one member from each
family was used.

I Young: 18 ≤ age ≤ 43, n1 = 171.

I Elderly: 74 ≤ age ≤ 89, n2 = 180.

5 Taxonomic rank: Species → Genus → Family → Order → Class → Phylum → Kingdom
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Results: differential network

I Global testing p-value = 0.009.

I Differential network obtained via multiple testing with FDR = 15%
(Edge: differential interactions; Edge label: odds ratio).

(Y) 0.51; (E) 1.31

(Y) 1.78; (E) 0.84

(Y) 1.11; (E) 0.5

(Y) 1.65; (E) 0.77

(Y) 1.22; (E) 0.57

(Y) 1.4; (E) 0.63

Faecalibacterium

Bacteroides

Oscillospira

Anaerofustis Blautia

Ruminococcus

Actinomyces

Bifidobacterium

Campylobacter

Actinobacteria
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Proteobacteria
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Implications of differential network

Campylobacter – Faecalibacterium:

I Young OR = 0.51: presence in Faecalibacterium is associated with
lower odds of presence in Campylobacter, a competitive relationship.

I Elderly OR = 1.31: presence in Faecalibacterium is associated with
higher odds of presence in Campylobacter, a collaborative
relationship.
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Implications of differential network

Aging is characterized by chronic low-grade inflammation
(inflammaging).

I Abundance of Faecalibacterium negatively associated with age
(Franceschi et al. Trends Endocrinol Metab. 2017).

I Ruminococcus enriched in immune-mediated inflammatory diseases
(Forbes et al. Front Microbiol. 2016).

I Abundance of Oscillospira enriched in inflammatory diseases
(Konikoff and Gophna. Trends Microbiol. 2016).
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Summary

I Learn conditional dependency relationships
among microbes using Markov networks.

I Differential network analysis identifies
systematic changes in microbial
interactions associated with age.
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What’s next?

I Presence/absence loses information –
higher resolution?

I Multi-omics: microbiome, metabolomics,
...
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Debiasing for linear regression

I Y = Zβ + ε,Z ∈ Rn×p.

I Projecting Y onto v ∈ Rn yields

β lin
r =

v ′Y

v ′Zr
= βr +

v ′ε

v ′Zr︸ ︷︷ ︸
variance

+
∑
j :j 6=r

v ′Zjβj
v ′Zr︸ ︷︷ ︸

bias

.

I The debiased estimator (given β̂) is

β̌r = β lin
r − b̂ias = β̂r +

v ′(Y − Zβ̂)

v ′Zr
.

I For an optimal direction v , β̌r ≈ βr+variance.
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Debiasing for logistic regression

Back to our case:

Xr = ḟ (X−rθr ) + εr ,

where f (u) = log(eu + e−u) and εr is sub-Gaussian.

I Linear approximation: local Taylor expansion (ûr = X−r θ̂r ) yields

Xr − ḟ (ûr ) + f̈ (ûr )X−r θ̂r︸ ︷︷ ︸
Y

= f̈ (ûr )X−r︸ ︷︷ ︸
Z

θr + (Re + εr ).

I Given an initial estimator θ̂r and score vector v
(i)
rt , the debiased estimator is

θ̌rt = θ̂rt +

∑n1
i=1 v

(i)
rt

{
X

(i)
r − ḟ (û

(i)
r )
}∑n1

i=1 v
(i)
rt f̈ (û

(i)
r )X

(i)
t

≈ θrt +

∑n1
i=1 v

(i)
rt ε

(i)
r∑n1

i=1 v
(i)
rt f̈ (û

(i)
r )X

(i)
t︸ ︷︷ ︸

variance

.
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Score vectors for debiasing

How to choose v
(i)
rt ?

θ̌rt = θrt +

∑n1
i=1 v

(i)
rt ε

(i)
r∑n1

i=1 v
(i)
rt f̈ (û

(i)
r )X

(i)
t︸ ︷︷ ︸

noise

+bias + REM,

where REM is small given good θ̂r . Principles for picking V are

I E[V εr ] = 0,

I min〈V ,V 〉 subject to 〈V ,Xt〉 = 1,

I 〈V , h(X−{r,t})〉 = 0 for any measurable function h.

Thus we can pick v
(i)
rt as the residual

v
(i)
rt = (X

(i)
t + 1)/2− g(X

(i)
−{r,t}, θ̂r , θ̂t), i = 1, . . . , n.
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Variance of θ̌rt

I The de-biased estimator is

θ̌rt ≈ θrt +
n−1∑n

i=1 v
(i)
rt ε

(i)
r

n−1
1

∑n1
i=1 v

(i)
rt f̈ (û

(i)
r )X

(i)
t

.

I Let v o
rt be the oracle score vector and Frt = 4EΘ1 [(v o

rt)
2 f̈ (ur )].

I Define

θ̃rt := θrt +
n−1∑n

i=1 v
o,(i)
rt ε

(i)
r

Frt/2
≈ θ̌rt .

I The variance is

Var(θ̌rt) ≈ Var(θ̃rt) =
1

Frt
≈

{
4n−1

n∑
i=1

(v
(i)
rt )2 f̈

(
X

(i)
−r θ̂r

)}−1

:= šrt .
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Assumptions

I log p = o(n
1/3
k ) and n1 � n2

I max1≤r≤p ‖θ̂r ,k − θr ,k‖1 = op
(
{log p}−1

)
.

I max1≤r≤p ‖θ̂r ,k − θr ,k‖2 = op
(
{nk log p}−1/4

)
.

I max1≤t≤p |At(ξ)| = o(pγ) for 0 < γ < 1, where for ξ > 0

At(ξ) = {r : | sinh(2θrt,1)| ≥ (log p)−2−ξ or | sinh(2θrt,2)| ≥ (log p)−2−ξ}.
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Theory: global testing

Challenge:

I Mn,p = max1≤r<t≤p W
2
rt .

I Entry-wise statistics Wrt and Wr′t′ are dependent!

Wrt =
θ̌rt,1 − θ̌rt,2√

šrt,1/n1 + šrt,2/n2

Solution:

I Under some mild assumptions:

I Θ1 and Θ2 are sparse: robustness of microbial communities.

I The number of large coefficients (θrt,k) is small: a few high activity
microbial interactions.

I Wrt and Wr′t′ are only weakly dependent!

I Mn,p − 4 log p + log log p → exp{−(8π)−1/2e−z/2}!
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Theory: multiple testing

I Given α > 0, want

τ∗ = inf
{

0 ≤ τ ≤ 2
√

log p :
R0(τ)

R(τ) ∨ 1
≤ α

}
.

I τ ≤ 2
√

log p because Wrt → N (0, 1) under H0,rt . Thus

max
(r,t)∈H0

|Wrt | ≤ 2
√

log p, a.s.

I Under weak dependence of Wrt ’s, for
0 ≤ τ ≤ bp =

√
4 log p − 2 log(log p),

R0(τ)

|H0|
≈ 2{1− Φ(τ)}, |H0| ≈ (p2 − p)/2,

where Φ(·) is the c.d.f. of N (0, 1).
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