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Question 1: What is a microbial network?
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Differential network analysis
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Question 2: How to test differences of microbial networks?
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The microbiome data

16S rRNA gene sequencing
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The microbiome data

» Microbiome data are
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The microbiome data

» Microbiome data are
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» Methods that work well for normal random variables do not apply!
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The microbiome data

» The compositional vector is very sparse.
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Existing models for microbial relationships

» Dissimilarity: ReBoot (Faust et al. 2012).

» Correlation: SparCC (Friedman and Alm 2012), MENAP (Deng et
al. 2012), CClasso (Fang et al. 2015), REBACCA (Ban et al.
2015).

» Probabilistic graphical models: SPIEC-EASI (Kurtz et al. 2015),
MINT (Biswas et al. 2016).

» Limitations: marginal relationships, permutation-based significance
test, zeros replaced with a pseudocount.
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Microbial conditional dependency relationships

We want a model that
> captures the conditional dependency relationships among microbes,
> address the sparsity issue,

» infers differential network with false discovery rate control.
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Our framework: binary Markov network (Ising model)

0.2
0.4

0.3

10 / 40



Our framework: binary Markov network (Ising model)
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Our framework: binary Markov network (Ising model)
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Our framework: binary Markov network (Ising model)

> Joint distribution Po(X) o exp { e, cicp X Xell }-
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Our framework: binary Markov network (Ising model)

> Joint distribution Po(X) o exp { e, cicp X Xell }-

» Conditional independence
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O=|0a * 63
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Our framework: binary Markov network (Ising model)

> Joint distribution Pe(X) o< exp { 1< <rcp XXl |-

» Conditional independence

* 912 0
O= 101 *x 0O
0 932 *

» Harris. Ecology (2016): small p <20
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Estimation of the Ising model

» Maximum likelihood: ok for small p, but intractable for large p:

Po(X) ox exp Z X Xi0rt
(r.t)

1Ravikumar et al. Ann. Stat. (2010)

12 / 40



Estimation of the Ising model

» Maximum likelihood: ok for small p, but intractable for large p:

Po(X) x exp Z X Xi0rt
(r.t)

» Nodewise (penalized) logistic regression! for large p:

exp(X 3, Xi017)

P(X, | X_,) =

1Ravikumar et al. Ann. Stat. (2010)

exp(_Xr Z_jgér )<JHU) + eXp(Xl’ EJ;ér )900) .
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Inference beyond estimation

» Inference of a single network

» done for Gaussian graphical model (GGM)?, but not for Ising model!

2Liu. AOS (2013)
3Xia, Cai and Cai. Biometrika (2015)
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Inference beyond estimation

» Inference of a single network
» done for Gaussian graphical model (GGM)?, but not for Ising model!
» Two-sample (and multi-sample) inference

» done for GGM3, but not for Ising model!

2Liu. AOS (2013)
3Xia, Cai and Cai. Biometrika (2015)
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Inference of differential Markov network

True networks Data

g v
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Inference of differential Markov network

True networks Data
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Global testing
Hy: 0, = 0,
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Inference of differential Markov network

True networks Data

°Sc

Global testing
Hy: 0, = 0,

Hy is NOT,
rejected

DONE
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Inference of differential Markov network

True networks Data

Global testing Hy is NOT, DONE
Hp: 0, = 0, rejected
1 Hols rejected Differential
Lo network
S So o0
. - @ @,

Multiple testing £ %03%
Hoye:@pgy =02 =0,1<7<t<p % Y 3¢
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Global testing Hy : ©1 = O,

Ho . max |9rt,1 — 9n,2| =0.
1<r<t<p
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Global testing Hy : ©1 = O,

Ho . max |9rt,1 — 9rt,2| =0.
1<r<t<p

Suppose we have good estimators 6,; , and their variances 3y x. Define

Hr‘t,l - 0rt,2

Wrt = = — .
\/Srt,l/nl + 82/

The test statistic for Hg is

max_ W23,
1<r<t<p
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Global testing Hy : ©1 = O,

Hoi max 9t1—9n2 =0.
(max[0re, 2

Suppose we have good estimators 6,; , and their variances 3y x. Define

Hr‘t,l - 0rt,2

Wrt = = — .
\/Srt,l/nl + 82/

The test statistic for Hg is

max_ W23,
1<r<t<p

Intuition:

> max statistic is most powerful against sparse alternatives.
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What is a good estimator for ©7

» Nodewise penalized logistic regression for large p.
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What is a good estimator for ©7

» Nodewise penalized logistic regression for large p.

> Easy to implement, but the estimator is biased!
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What is a good estimator for ©7

» Nodewise penalized logistic regression for large p.

> Easy to implement, but the estimator is biased!

» Solution: debiasing via projection

19 / 40



Debiasing the Lasso via projection®

> Y =2Z8+¢e,ZcRP.

4Zhang and Zhang, JRSSB (2014)
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Debiasing the Lasso via projection®

» Y=2ZB+¢,Zc R,

» Projecting Y onto v € R" yields

lin
Br = =pBr+ ’;Z

——

variance

4Zhang and Zhang, JRSSB (2014)

v'ZiB;
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J#r
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bias
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Debiasing the Lasso via projection®

» Y=2ZB+¢,Zc R,

» Projecting Y onto v € R" yields

lin
Br = =pBr+ ’;Z

——

variance

» The debiased estimator (given j) is

Br = /J’"" bias = /3’,

4Zhang and Zhang, JRSSB (2014)

Ji#r

————

bias

V(Y —ZB)

v'Z,

v'ZiB;
T Z v'Z,
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Debiasing the Lasso via projection®

> Y=2Z3+¢,ZcR"™P,
» Projecting Y onto v € R" yields
/
lin __ _ v'ZiB3;
B = =B+ 'z +§ 7
» The debiased estimator (given j) is
, A
% lin (Y — Zﬁ)
, = 8" _bias = §, + L2 _ =2
B = it —bias = B, + 22—
» For an direction v, B3, & B,+variance.

4Zhang and Zhang, JRSSB (2014)
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Solution for the Ising model

» Debiasing via projection and local Taylor expansion of
X, = f(X_.0,) +e,,

where f(u) = log(e" + e™") and ¢, is sub-Gaussian.
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Solution for the Ising model

» Debiasing via projection and local Taylor expansion of
X, = f(X_.0,) +e,,
where f(u) = log(e" + e™") and ¢, is sub-Gaussian.

» The debiased estimator ért satisfies

Vil —05) = N(0,5,).
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Global testing procedure

Step 1 Given presence/absence data X and Y, obtain debiased 6, x (and 3:4)
forl<r<t<pand k=1,2.
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Global testing procedure

Step 1 Given presence/absence data X and Y, obtain debiased 6, x (and 3:4)
forl<r<t<pand k=1,2.

Step 2 For1 < r <t < p, calculate W,

x x

9rt,1 - 0rt,2

VSe1/m+ Se2/m .

Wrt:
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Global testing procedure

Step 1 Given presence/absence data X and Y, obtain debiased 6, x (and 3:4)
forl<r<t<pand k=1,2.

Step 2 For1 < r <t < p, calculate W,

x x

9rt,1 - 0rt,2

VSe1/m+ Se2/m .

Wrt:

Step 3 Form the test statistic

2
M,, = max W;.
1<r<t<p

Step 4 Reject Hp if
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Theory: global testing

Test statistic
Mpp = max w2,

1<r<t<p

Theorem (M, Xia, Cai and Li)

Under the null and some regularity conditions, for any z € R,
My, —4logp + loglog p — Type | extreme value distribution,

as ny, np, p — OQ.
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Theory: global testing

Test statistic
Mpp = max w2,

1<r<t<p

Theorem (M, Xia, Cai and Li)

Under the null and some regularity conditions, for any z € R,
My, —4logp + — Type | extreme value distribution,
as ny, np, p — OQ.

Intuition:
» W, — N(0,1) under the null.

> Wy's are weakly dependent under mild assumptions.
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Simulation results: type | error

> p= 100,@1 = 0, = O,.
» Generate data {X()}7_; ~ Po, and {Y)}"_, ~ P, by Gibbs sampling.

» Run global testing with a = 5%.

0.100-

0.075-
<] * PermBMN
5 . A PermMLE
— 0.050-
g A A B TestBMN
= TestGGM

0.025-

N [ |
0.000-

Random  Scale-free Small-world
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Simulation results: power

» p=100,01 = O — A, 02 = Oy + A where ||Al|o = 10.
» Generate data {X()}7_; ~ Po, and {Y)}"_, ~ Pe, by Gibbs sampling.

» Run global testing with a = 5%.

1.00 A A
A |
1 [ ]

0.95 =
_ 0.90- PermBMN
g A PermMLE
& oas) M TestBMN

’ TestGGM
0.80-
0.75-

Random  Scale-free Small-world
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Inference of differential Markov network

True networks Data

Global testing
Hp: 0, = 0,

Hy is rejected

Multiple testing

Hoyt:Opeg = Ope2 =0,1<7r<t<p
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Multiple testing

Hort: 01 —0r2=0, 1<r<t<p.
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Multiple testing

Hort: 01 —0r2=0, 1<r<t<p.

» Test statistic for individual hypothesis:

~

ert,l - 0rt,2

Wrt = ~ =
\/Srt,1/n1 + 82/ Mo

—>null N(O, 1).

> Reject Hy ¢ if |W,e| > 7.
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Multiple testing

Hort : 01 —0r2=0, 1<r<t<p.
» Test statistic for individual hypothesis:

_ ért,l - ért,Z
VEe1/m + e 2/m

> Reject Hy ¢ if |W,e| > 7.

Wi

—>null N(O, 1).

Q: how to choose T to ensure false discovery rate control?
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What is the FDR?

Challenge: for any given 7

» Number of rejections: R(7) = Zlﬁr<tip I(|Wt| > 7).
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What is the FDR?

Challenge: for any given 7
» Number of rejections: R(7) = Zlﬁr<tﬁp I(|Wt| > 7).

> Number of false rejections: FRo(7) = >, oy [([Wi| = 7).
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What is the FDR?

Challenge: for any given 7
> Number of rejections: R(7) =31, o<, [(|Wi| = 7).
» Number of false rejections: Ro(7) — >/ - (W] = 7).

Z(r,t)€Ho

» Need to control

FDR(7) := E[FDP(7)], FDP(r):= R’ij;’_v)l.
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What is the FDR?

Solution:

> W,'s are only weakly dependent under some mild assumptions.
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What is the FDR?

Solution:
> W,'s are only weakly dependent under some mild assumptions.

> Ro(r) = ZL, eHo [(|W,| > 7) = sum of i.i.d. random variables

R{)(T)
|Hol

~2{1 — ®(7)}, where () is c.d.f. of (0, 1).
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What is the FDR?

Solution:
> W,'s are only weakly dependent under some mild assumptions.

> ~ sum of i.i.d. random variables
THol ~2{1—®(7)}, where ®(-) is c.d.f. of N(0,1).
0

» Assuming sparsity, number of true nulls |Ho| ~ (p* — p)/2.
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What is the FDR?

Solution:
> W,'s are only weakly dependent under some mild assumptions.

> ~ sum of i.i.d. random variables

THol ~2{1—®(7)}, where ®(-) is c.d.f. of N(0,1).
0

» Assuming sparsity, number of true nulls |Ho| ~ (p* — p)/2.

» We thus have )
FDP(r) = AL d>RE(TT))}(p —p)/2
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Multiple testing procedure

Step 1 Given presence/absence data X and Y, obtain debiased 6, x (and 3:4)
foril<r<t<pand k=1,2.

Step 2 For1 < r <t <p, calculate W,

art,l - 0rt,2

\Y4 grt,l/nl + 5rt,2/”2 .

Wrt:
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Multiple testing procedure

Step 1 Given presence/absence data X and Y, obtain debiased 6, x (and 3:4)
foril<r<t<pand k=1,2.

Step 2 For1 < r <t <p, calculate W,

art,l - 0rt,2

\Y4 S’rt,l/nl + :Slrt,Q/nQ .

Wrt:

Step 3 Find 7

F=inf{0<7< V4Iogp72|og|ogp:F/DTP(T)§a}.

If the above 7 does not exist, 7 — /4 log p.
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Multiple testing procedure

Step 1 Given presence/absence data X and Y, obtain debiased 6, x (and 3:4)
foril<r<t<pand k=1,2.

Step 2 For1 < r <t <p, calculate W,

art,l - 0rt,2

V8e1/m + 3e2/n2 .

Wrt:

Step 3 Find 7
F=inf{0<7< FDP(7) < a}.
If the above 7 does not exist,

Step 4 Reject Ho e if Wee > T for1 <r<t<p.

30 / 40



Theory: multiple testing

Theorem (M, Xia, Cai and Li)

Let qo = |Ho| and q = (p?> — p)/2. Under some regularity conditions, our
multiple testing procedure asymptotically controls the false discovery
rate, i.e.

FDR(# FDP(#
7R(T) —1, (7) —1,
aqo/q aqo/q

as ny, Ny, p — o0.
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Simulation results

» p=100,0; =0y — A, 02 = O + A where ||Aflp = 0.04- (g)
> Generate data {XV}"_; ~ P, and {Y)}"_, ~ Pg, by Gibbs sampling.

» Run multiple testing with a = 10%.

0.7- -
9 02 ° i
o g 0.6
o o
] 2 = TestBMN
g = ) = TestGGM
801 3 0.5 !
fid £ | :
0.4-
0.0- -
Random  Scale-free Small-world Random  Scale-free Small-world
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Gut microbiome in UK twins

N ay iy /ji\

= = Bifidobacterium

Fig: Goodrich et al. Cell Host & Microbe.
(2016)

16S rRNA sequencing of the gut
microbiome.

Very rare bacterial genera®were
removed, leaving p = 59.

Only one member from each
family was used.

Young: 18 < age <43, n; = 171.
Elderly: 74 < age <89, n, = 180.

5 Taxonomic rank: Species — Genus — Family — Order — Class — Phylum — Kingdom
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Results: differential network

> Global testing p-value = 0.009.
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Results: differential network

> Global testing p-value = 0.009.

» Differential network obtained via multiple testing with FDR = 15%
(Edge: differential interactions; Edge label: odds ratio).

Campydobacter

() 0.5T(E) 131
Osci@piru
Faecal i@teri um

. O Actinobacteria
Ruml@occus

W) L1 )05 O Bacteroidetes
(¥) 1.234(E) 057 O Firmicutes
Bifidobcterium © Proteobacteria
W 1400 Bacmides
(Y) 1.65(E) 0.77
Actil@nyces
(Y) L78§(E) 0.84

Anac@¥ustis Bi:‘
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Implications of differential network

Campylobacter — Faecalibacterium:

» Young OR = 0.51: presence in Faecalibacterium is associated with
lower odds of presence in Campylobacter, a competitive relationship.

» Elderly OR = 1.31: presence in Faecalibacterium is associated with
higher odds of presence in Campylobacter, a collaborative
relationship.
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Implications of differential network

Aging is characterized by chronic low-grade inflammation
(inflammaging).

» Abundance of Faecalibacterium negatively associated with age
(Franceschi et al. Trends Endocrinol Metab. 2017).

» Ruminococcus enriched in immune-mediated inflammatory diseases
(Forbes et al. Front Microbiol. 2016).

» Abundance of Oscillospira enriched in inflammatory diseases
(Konikoff and Gophna. Trends Microbiol. 2016).
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Summary

» Learn conditional dependency relationships
among microbes using Markov networks.
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Summary

» Learn conditional dependency relationships
among microbes using Markov networks.

A h

) &l? » Differential network analysis identifies
systematic changes in microbial
interactions associated with age.
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What's next?

> Presence/absence loses information —
higher resolution?

» Multi-omics: microbiome, metabolomics,
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https://github.com/drjingma/TestBMN

Symposium

MICROBIOME
Data to Knowledge

Friday, March 16, 2018

Fred Hutchinson Cancer Research Center Campus

Symposium Agenda (subject to change)
Making Sense of the Human Microbiome
Speakers: Meredith Hullar, Elhanan Borenstein, David Fredricks
Microbiome and Infectious Diseases
Speakers: William DePaolo, Alison Roxby, Nina Salama
Bioinformatics for the Microbiome

Speakers: Ben Callahan, Daniel McDonald, Noah Hoffman

Microbiome Data Analysis
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Organized by Jing Ma, Michael Wu and Ruth Etzioni

For more visit fredhutch.
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Debiasing for linear regression

> Y =2ZB+¢Zc R,
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Debiasing for linear regression

> Y =2ZB+¢Zc R,

» Projecting Y onto v € R" yields

B =

V'Y
v'Z,

:Br+
Vv

Ve

variance
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Debiasing for linear regression

> Y =2ZB+¢Zc R,

» Projecting Y onto v € R" yields

glin V'Y _5 Ve +Z V’Zj/Bj.

! ! !
v'Z, v'Z, P v'Z,
variance bias
» The debiased estimator (given j) is
‘v oA
B, = /31’" — bias = Br + M
v'Z,
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Debiasing for linear regression

v

Y =28 +¢,Z € R

v

Projecting Y onto v € R" yields

! ! !
im_ V'Y v'e v'ZiB;
B = v'Z, =pr+ v'Z, +”§ v'Z,

variance bias

The debiased estimator (given 3) is

v

V(Y —ZB)

. i e~ a
. = B"™ _ bias = j3,
Br =8 ias = [, + vz,

» For an direction v, 5, =~ [3,+variance.

42 /40



Debiasing for logistic regression

Back to our case:

Xr = f(Xfrer) + Er,

where f(u) = log(e” + e™") and &, is sub-Gaussian.
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Debiasing for logistic regression

Back to our case:

Xr = f(X_r0;) + &,

where f(u) = log(e” + e™") and &, is sub-Gaussian.

» Linear approximation: local Taylor expansion (i, = X_.0,) yields

X, — (i) + F(0.)X_,6, = F(0,)X_, 0, + (Re +&/).
——

Y z
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Debiasing for logistic regression

Back to our case:

Xr = f(X_r0;) + &,

where f(u) = log(e” + e™") and &, is sub-Gaussian.

» Linear approximation: local Taylor expansion (i, = X_.0,) yields

X, — £(0,) + F(0.)X_,0, = F(0,)X_, 0, + (Re + &/).
~—

Y z

» Given an initial estimator é, and score vector v, the debiased estimator is

rt 1
S v (X0 — ()} ~ 0, + >, videl
o . ~ Urt N = .
s v XY S VXD

variance

O :ért+

43 /40



Score vectors for debiasing

How to choose v,(ti)?

n () (7)
e = bre+ nZi?) D
Doy v F(O7) X

noise

+bias + REM,

where REM is small given good 0,. Principles for picking V are
» E[Ve] =0,
» min{V, V) subject to (V, X;) =1,
» (V,h(X_¢r 1)) =0 for any measurable function h.

Thus we can pick v,(ti) as the residual

Vr(tl) = (Xt(l) + 1)/2 - g(X(,i){r,tpéhétL = 17 ceey N
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Variance of 0,

v

The de-biased estimator is

S s o
R S UGN O,
ny 2oty v £(0F7) X

v

Let v3 be the oracle score vector and F; = 4Ee, [(v2)?f(u/)].
> Define

. nmlson vf’(i)a(i) .
O =0, + % ~
rt

» The variance is

. -1
Var () ~ Var(f,) = Fi ~ {4n1 Z(v,(ti))zf(X(iZé,)} = 3.
rt
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Assumptions

> |0gp — o(n,l(/3)

> maxi<,<p |0,k — Orll1 = 0p ({log p}~1).
2 = o, ({nklog p}~1/%).
> maxi<i<p [Ae(§)] = o(p?) for 0 < v < 1, where for £ >0

Ai(€) = {r : |sinh(26,1,1)| > (log p) 7% or [sinh(20,1,2)| > (log p)~2~¢}.

and ny < m

> maxi<r<p 10rk — Orkl
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Theory: global testing

Challenge:

2
> Mnp = maxi<r<i<p Wi.
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Theory: global testing

Challenge:
> My, = maxi<r<t<p W,zt.
» Entry-wise statistics W, and W, are dependent!

Oreg — Ore2

\/Se1/m 4 82/

Wit =

Solution:
» Under some mild assumptions:

> ©; and ©; are sparse: robustness of microbial communities.

> The number of large coefficients (0, ;) is small: a few high activity
microbial interactions.
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Oreg — Ore2

\/Se1/m 4 82/

Wrt =

Solution:
» Under some mild assumptions:

> : robustness of microbial communities.
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Theory: global testing

Challenge:
> My, = maxi<r<t<p W,2t.
» Entry-wise statistics W, and W, are dependent!

Oreg — Ore2

\/Se1/m 4 82/

Wrt =

Solution:
» Under some mild assumptions:

> : robustness of microbial communities.

> : a few high activity
microbial interactions.

> W, and W,/ are only weakly dependent!

> M,,— 4logp+ loglog p — exp{—(8n) 1/2e=7/?}1

47 / 40



Theory: multiple testing

» Given o > 0, want

T—Inf{0<T<2F \/170(}
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Theory: multiple testing
> Given a > 0, want
T :|nf{0§7§2\/|ogp:w Sa}.

> 7 < 2y/log p because W, — N(0, 1) under Hp . Thus

max |Wy| < 24/logp, a.s.
(rit)e€Ho
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Theory: multiple testing
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¥ :inf{0§7§2\/logp:w Soc}.

> 7 < 2y/log p because W, — N(0, 1) under Hp . Thus

max |Wy| < 24/logp, a.s.
(rit)e€Ho

> Under weak dependence of W,;'s, for
0 <7 < by, = +/4log p — 2log(log p),

~ _ T ~ (p? —
W~2{1 &(7)},  [Hol = (P — P)/2,

where () is the c.d.f. of A/(0,1).
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