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In this supplement, we prove the theoretical results in the main paper.

1. Derivations of Eq. (7) in the main text. We only focus on the high-dimensional case
where K = n < p, noting that similar derivations can be straightforwardly applied to the case
where K > p. It follows from the definition of 3,,,(n) that

Bax(n) = (XTHX +7Q~") ' XTHy
= Q(XTHXQ +71L,) ' XTHy
= QXTH (XQXTH + 1L, 'y.
Since the GMD of X yields X = USVT, we get
By (n) = QVSUTH (U (S” 4 41,) UTH) 'y
(1) =QVS!8?(8? +91,) 'UTHy.

The last equality in (1) comes from the fact that U is a n x n invertible matrix and UTHU =
L,. Denoting W,, = S%(S% 4 nI,,) !, we can write

) Beex(n) = QVS™'W, UTHy.

2. Proof of Propositions 3.1 and 3.2. Recall E}”(hj) = By — Ej(hj) and A =
QVWSflUTHLL. Plugging in the definition of 3" and Ej(h]-), we get

BY(hj) =Y &b+ €87 = D & B = by (& — 1B + 2

m#j m#j
= (L= ))& + 1) By + Y Em(Brn — B+
m#j
3 hi(&55 — D85 = 8" + 7',

Wher§ 'z;” = Z,?:l a;;€;. To prove the asymptotic normality of 2%, we first check Lindeberg’s
condition; that is,

R 5 2 _
nll_)n;OS%];E [ajiei x I{|aji€i| > tsn;}] =0, forall ¢ >0,
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where s2 J= Yoria ﬂ Let € be a random variable distributed like every ;. Then,
1 n
S E [0 x Hjayl > tsn)] = = D AGE[ X T{lel > tsnglasi 1]}
7] =1 n,J =1
1 (& -
§? Za?% E|e?xT |5>tsn,j{ max |aﬂ|}
nJ \i=1 ol
) t Z?:la?i
=E |e" xS |e|>
maxi;=1,..,n \sz‘\
Since
i TAXi=Lm |ajil o0,
n—oo n
>ic a?i

by using the dominated convergence theorem, we get

lim —ZE a%ie; x I{|a;i&]| > tsn;}] =0forallt > 0.

n%oos
7.7 =1

Next, using the Lindeberg central limit theorem, we get sn J w 4 N (0,1) as n — oo. Lastly,

we find the explicit form of s,, ; by noting that

Z%z— AAT) ;5 = Qi

which completes the proof of Proposition 3.1.
Next, we prove Proposition 3.2. Recall that R} = o? {QVW2S_2VTQ}( i) Then, we

can write

Q}UJ = R}”j + e}QVstlUTHl/Q(H1/2L;Lle/2 _ U2In)H1/2U871WVTer,

J

where e; € R" is the vector with one in its j-th entry and zero elsewhere. By Assumption
(A1), we know that HHl/QL%TZJLle/2 — 01,2 = |LyHL], — 02L,|l2 = o(1) as n — oo.
Thus, we have

e]QVWS 'UTH'?(H'/*LTL,H'? - 0°L,)H/*US'"WVTQe; = o( RY)).
This further leads to

—31 =14 0(1), as n — oo.

R’LU

: d
Since 2/, /% = N(0,1), we have

2w 2w Q.
=7 x’/R—ggN(O,l)asn%oo.

w w L.
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This completes the proof of Proposition 3.2.
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3. Proof of Theorem 3.3. Recall that X = H/2XDAY?2 and 8 = DT3"*. The next

lemma characterizes H,@()\) —- 8

X where B()) is given in eq. (13) in the main text.

LEMMA 3.1.  Suppose that |Q||2 = 1 and each column of X has been scaled so that
HXdJHiI =nforj=1,...,p, where d; is the j-th eigenvector of Q. For any co > 0, if

A= 2\/20*nlogp(1 +¢o)||LLHLy||2,

then under Assumptions (Al)—(A3), we have
HB(A) Sy = O, (sox/n_l logp> as n — oo.

PROOF OF LEMMA 3.1. We first define some additional notations. For any index set A C
{1,...,p}, let X 4 denote the submatrix of X with columns indexed by A, and let P 4 denote
the projection matrix onto the column space of X 4. Define

*

XA (X{AXA)_I S\ — (I — PA) XA_1/2B*
X4 (X, X4) 'sA— (I-P4)XA25"

*

Xm

= max
|A|=m,se{£1}m

2

where € = H'/%¢, and A > 0 is the tuning parameter. For all mg > 0, define the following
Borel set

Qe =00, <t Ym >mo},

where

ti = 1/ 2log p(m V 1)(1 + co) [LTHLy |

for some constant ¢y > 0. Let

c'mn 1/2 c*n%n 1/2 c*
= = d C=—.
" < SoA ) 2 (30/\2 ) an Ca

It can be checked that with the 7, specified in Assumption (A2) and the X specified in Lemma
3.1, r1 and r are both O(1) quantities. Let M} = 24412 +4/Cry +4C, Sy = {j : Bj()\) +
0} and S; = SoUSy. We follow the proof in Zhang et al. (2008), and summarize the following
three major steps.

1. According to the proof of Theorem 1 in Zhang et al. (2008) (see Equation (5.26) in
Zhang et al. (2008) and its derivations), we have |S1| < M;j'so while conditioning on the
event {2, .

2. In the second step, we show that the event {25, happens with high probability. In Zhang
et al. (2008), this is proved for the setting where € ~ N (0,0°I,,). However, in our case, €
is not necessarily Gaussian, and its covariance matrix, H'/2LT L, H'/2, is not necessarily
equal to I, (up to a constant). To prove this, we first notice that for all sg,

@ () <F(@)< 32 (%) o
where

X4 (X,Xa) 'sA—(I-P4) XA 125" _,
. koo ey%a T >

Pm =P | €T
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with |A| = m and some s € {£1}". Next, we find an upper bound for p,,. Since & =
HY/ 21,T¢, where € has i.i.d sub-Gaussian entries with mean 0 and variance 1, using the
Hoeffding’s inequality (Wainwright, 2019), we get

2

m
||LLHL¢»||2
Combining (4) and (5), we have

(5) Pm < 2exp{— }=2exp(=(mV1)(1 +co)logp).

io: 2 (mVv1)+1 ( ) (p7(1+co))mvl

m=0
4 m (P —m(14co)
< mre> (2
m=1

4 _
= T +2 ((1 4 op~(te)yp _ 1)

4
(6) < e (exp(2p™®) —1);

here, we use the binomial theorem and the fact that lim,_,o(1 + )
have P (,,) =1 —P(Q5, ) — 1 as p — oo.
3. We use the techniques in the proof of Theorem 3 in Zhang et al. (2008) to bound

e — e, Therefore, we

H ,Z‘](A) — E*Hl with the pre-specified 7; and A. Recall that on the event 2, ,, we have

|S1| < Misg. Let Xy and Xo, respectively, denote the the submatrix of X with colurnns
indexed by S7 and SY. Slmllarly, let ,61 and ,32, respectively, denote the subvector of ,8 with

entries indexed by S; and SY; B1(\) and B, ()), respectively, denote the subvector of B()\)
with entries indexed by S1 and SY; A1 and Ay, respectively, denote the submatrix of A with
both rows and columns indexed by S and SY. Since ¢* > M{'sg + 1, by Assumption (A3),

the vector v; = XIA_l/2 (Bl( ) — ET) satisfies

™ [vill3> eon| AT 23, ) - B
Denoting by P; the projection matrix onto the column space of X1, we have

IVill < vy + P13 = Xa A28, ()2 + [P~ Xa AL 2By (V)
2 2Ba + PH Lyell2 +[|P1(F —~ X1 A7 7B, (1)
Bslla + [|PrH*Lyells +n~/2| 23 g |,

< H 1X2A

(8) < |X2A,28

where £, =n~'XTX,, y =HY2y and g; = X (y - XAl_mﬁ()\)). Note that the KKT

conditions of eq. (13) in the main text yield that ||g1 (/.o < A. Then, by Assumption (A3), we
have

10 g llo < ex 2 llgilloo v/1S1] < A(Mso/ex) /2.

Also, since S¢ C S, [|Xd,||% = n. and [|Q]|2 = 1. we have [|XaA5 2By l2 < V/nm. We
next find an upper bound for HPlHl/ 2L,¢,<—:||2. Using the Hanson-Wright inequality (Theorem
2.1 in Rudelson et al., 2013), we have

2
V2072, > 1/27 1 >< _ ct
©  P(IPHYLTE; > [P HYL] | + 1) < exp BRI |
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for some constant c. By properties of matrix norms, we have
IP1H'2L|[3 < |[LJHLy||2; |PyHY?LY % < |LIHLy 2] S1];

here, we use the facts that | P1]|2 = 1 and ||P1 || = |S1]|. Thus,

t2
IP( PHY2LT¢|, >, /|ILTHLy|5|S t) < S
|| 1 1/16”2— || zp ’(Z)H2| 1‘+ _eXp HLTHLQp”Q

Letting ? = HLT HL,||2|S1|log p, there exists a Borel set Q with IP( ) — 1 as p— oo,
such that on this set

(10) IPyHY2LTE]> < | /|LTHL, 2|5 | (1 n \/logp> .

Therefore, on the event 25, N S~2, we have

[P H2LTE]s <\ /ILTHL 200 (14 iogp)

Thus,
[ar (B =81) |, < )2l

<V 4 n—l/a\/HL;HLngMfso (1 n \/logp>

* 1/2
(11) L nl2) <Mls’0) / .

NCx

Since A = 2\/20*nlogp(1 +co) | Ly, HLy||2, L HLy |2 = o?+o(l),m =0 (\/n—lso logp>
and M = O(1), we have

310 - B, < ar]] ar (B - 51)

‘ =0, (\/n—lsologp).

Therefore,
1:(0) = Bl < v/5ollB1() = Bl = 0y (s0v/n~Tlogp)
Finally,
1BO) =Bl < 1B1(N) = Bills +m1 = Oy (s0/n Tlogp).
This completes the proof. O

Now we use Lemma 3.1 to prove Theorem 3.3. First, note that since sy = o ((n/logp)")
for some r € (0,1/2), we have

(12) H H _Op{(loipy/zr}

Thus,
p
G = 1D & (B = Bin™) — (1 = hy)&S5 + hy) (8] — BI™)
m=1
= |[(QVWVT — (1 - h))E - h;L,) (8" — ﬂi”it)]j‘
(13) <|@vwvT— 1 —n)= -1l | BB -
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Combining (12) and (13), it can be seen that

n—o0 n

i Pr{rcjmm < Ji@vwyr - - mz- i | (FE2) -
Finally, Theorem 3.3 directly follows from Propositions 3.1 and 3.2.

4. Proof of Theorem 3.4. We first note that P;’(h;) < « is equivalent to
1B (h)| = 5 (h) + 4y /B

since |31 (hs)| = | (1 = hy)egs +hs) B + Gi(hy) + 2

, we have

Pr{‘B}*”(hj)‘ > () + d1-as2) R%} =

Pr{[ (1= Ry)&h + ) 8] = 16 ()] = 1251 = 5(hy) + a2y /R } -
Hence, it suffices to show that as n — oo,
a4y Pr{|((1 =Ry +h3) 5] = 16 (i)l = 1] 2 W) + aaayor [R } = .

Since (R%)_l/zz;” 4 N(0,1) as n — oo, if

)((1 — hj)&j; +hj) B3

=[G (Rj)| = W (hy) — q—ay2)/ B

2 q(1-v/2)
V1t

then (14) holds. Since lim,, oo Pr(|(j(h;)| < ¥;(h;)) =1 (Theorem 3.3), we know that as
n — oo, (15) holds if

|85 = (1 — hy)&g + Ryl ™ <2‘I’j(hj) + (90-a/2) +a0-y/2)) \/R}Uj) ;

this completes the proof of Theorem 3.4.

(15)
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