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In this supplement, we prove the theoretical results in the main paper.

1. Derivations of Eq. (7) in the main text. We only focus on the high-dimensional case
where K = n < p, noting that similar derivations can be straightforwardly applied to the case
where K > p. It follows from the definition of β̂KPR(η) that

β̂KPR(η) =
(
X⊺HX+ ηQ−1

)−1
X⊺Hy

= Q(X⊺HXQ+ ηIp)
−1X⊺Hy

= QX⊺H (XQX⊺H+ ηIn)
−1 y.

Since the GMD of X yields X=USV⊺, we get

β̂KPR(η) = QVSU⊺H
(
U
(
S2 + ηIn

)
U⊺H

)−1
y

= QVS−1S2(S2 + ηIn)
−1U⊺Hy.(1)

The last equality in (1) comes from the fact that U is a n×n invertible matrix and U⊺HU=
In. Denoting Wη = S2(S2 + ηIn)

−1, we can write

β̂KPR(η) =QVS−1WηU
⊺Hy.(2)

2. Proof of Propositions 3.1 and 3.2. Recall β̂wj (hj) = βwj − B̂j(hj) and A =

QVWS−1U⊺HL⊺
ψ . Plugging in the definition of βwj and B̂j(hj), we get

β̂wj (hj) =
∑
m ̸=j

ξwjmβ
∗
m + ξwjjβ

∗
j −

∑
m̸=j

ξwjmβ
init
m − hj(ξ

w
jj − 1)βinitj + zwj

=
(
(1− hj)ξ

w
jj + hj

)
β∗j +

∑
m ̸=j

ξwjm(β
∗
m − βinitm )+

hj(ξ
w
jj − 1)(β∗j − βinitj ) + zwj ,(3)

where zwj =
∑n

i=1 ajiϵ̃i. To prove the asymptotic normality of zwj , we first check Lindeberg’s
condition; that is,

lim
n→∞

1

s2n,j

n∑
i=1

E
[
a2jiϵ̃

2
i × I {|ajiϵ̃i|> tsn,j}

]
= 0, for all t > 0,
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where s2n,j =
∑n

i=1 a
2
ji. Let ε be a random variable distributed like every ϵ̃i. Then,

1

s2n,j

n∑
i=1

E
[
a2jiϵ̃

2
i × I{|ajiϵ̃i|> tsn,j}

]
=

1

s2n,j

n∑
i=1

{
a2jiE

[
ε2 × I

{
|ε|> tsn,j |aji|−1

}]}
≤ 1

s2n,j

(
n∑
i=1

a2ji

)
E

[
ε2 × I

{
|ε|> tsn,j

{
max
i=1,...,n

|aji|
}−1

}]

= E

ε2 × I

|ε|>
t
√∑n

i=1 a
2
ji

maxi=1,...,n |aji|


 .

Since

lim
n→∞

maxi=1,...,n |aji|√∑n
i=1 a

2
ji

= 0,

by using the dominated convergence theorem, we get

lim
n→∞

1

s2n,j

n∑
i=1

E
[
a2jiϵ̃

2
i × I {|ajiϵ̃i|> tsn,j}

]
= 0 for all t > 0.

Next, using the Lindeberg central limit theorem, we get s−1
n,jz

w
j

d→N(0,1) as n→∞. Lastly,
we find the explicit form of sn,j by noting that

s2n,j =

n∑
i=1

a2ji = (AA⊺)(j,j) =Ωwjj ,

which completes the proof of Proposition 3.1.
Next, we prove Proposition 3.2. Recall that Rwjj = σ2

{
QVW2S−2V⊺Q

}
(j,j)

. Then, we
can write

Ωwjj =Rwjj + e⊺jQVWS−1U⊺H1/2(H1/2L⊺
ψLψH

1/2 − σ2In)H
1/2US−1WV⊺Qej ,

where ej ∈ Rn is the vector with one in its j-th entry and zero elsewhere. By Assumption
(A1), we know that ∥H1/2L⊺

ψLψH
1/2 − σ2In∥2 = ∥LψHL⊺

ψ − σ2In∥2 = o(1) as n→∞.
Thus, we have

e⊺jQVWS−1U⊺H1/2(H1/2L⊺
ψLψH

1/2 − σ2In)H
1/2US−1WV⊺Qej = o(Rwjj).

This further leads to
Ωwjj
Rwjj

= 1+ o(1), as n→∞.

Since zwj /
√

Ωwjj
d→N(0,1), we have

zwj√
Rwjj

=
zwj√
Ωwjj

×

√
Ωwjj
Rwjj

d→N(0,1) as n→∞.

This completes the proof of Proposition 3.2.
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3. Proof of Theorem 3.3. Recall that X̌ = H1/2XD∆1/2 and β̃
∗
= D⊺β∗. The next

lemma characterizes
∥∥∥β̃(λ)− β̃

∗∥∥∥
1
, where β̃(λ) is given in eq. (13) in the main text.

LEMMA 3.1. Suppose that ∥Q∥2 = 1 and each column of X has been scaled so that
∥Xdj∥2H = n for j = 1, . . . , p, where dj is the j-th eigenvector of Q. For any c0 > 0, if

λ= 2
√

2c∗n log p(1 + c0)∥L⊺
ψHLψ∥2,

then under Assumptions (A1)–(A3), we have∥∥∥β̃(λ)− β̃
∗∥∥∥

1
=Op

(
s0
√
n−1 log p

)
as n→∞.

PROOF OF LEMMA 3.1. We first define some additional notations. For any index set A⊂
{1, . . . , p}, let X̌A denote the submatrix of X̌ with columns indexed by A, and let PA denote
the projection matrix onto the column space of X̌A. Define

χ∗
m = max

|A|=m,s∈{±1}m

∣∣∣∣∣∣ε⊺ X̌A

(
X̌′
AX̌A

)−1
sλ− (I−PA) X̌∆−1/2β̃

∗∥∥∥X̌A

(
X̌′
AX̌A

)−1
sλ− (I−PA) X̌∆−1/2β̃

∗∥∥∥
2

∣∣∣∣∣∣ ,
where ε =H1/2ϵ, and λ > 0 is the tuning parameter. For all m0 ≥ 0, define the following
Borel set

Ωm0
≡ {χ∗

m ≤ tm ∀m≥m0} ,

where

tm =
√

2 log p(m∨ 1)(1 + c0)∥L⊺
ψHLψ∥2

for some constant c0 > 0. Let

r1 ≡
(
c∗η1n

s0λ

)1/2

, r2 ≡
(
c∗η21n

s0λ2

)1/2

and C ≡ c∗

c∗
.

It can be checked that with the η1 specified in Assumption (A2) and the λ specified in Lemma
3.1, r1 and r2 are both O(1) quantities. Let M∗

1 = 2+4r21+4
√
Cr2+4C , S̃0 = {j : β̃j(λ) ̸=

0} and S1 = S̃0∪S0. We follow the proof in Zhang et al. (2008), and summarize the following
three major steps.

1. According to the proof of Theorem 1 in Zhang et al. (2008) (see Equation (5.26) in
Zhang et al. (2008) and its derivations), we have |S1| ≤M∗

1 s0 while conditioning on the
event Ωs0 .

2. In the second step, we show that the event Ωs0 happens with high probability. In Zhang
et al. (2008), this is proved for the setting where ε ∼ N(0, σ2In). However, in our case, ε
is not necessarily Gaussian, and its covariance matrix, H1/2L⊺

ψLψH
1/2, is not necessarily

equal to In (up to a constant). To prove this, we first notice that for all s0,

P
(
Ωcs0
)
≤ P (Ωc0)≤

∞∑
m=0

2m∨1
(
p
m

)
pm,(4)

where

pm = P

∣∣∣∣∣∣ε⊺ X̌A

(
X̌′
AX̌A

)−1
sλ− (I−PA) X̌∆−1/2β̃

∗∥∥∥X̌A

(
X̌′
AX̌A

)−1
sλ− (I−PA) X̌∆−1/2β̃

∗∥∥∥
2

∣∣∣∣∣∣≥ tm.


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with |A| = m and some s ∈ {±1}m. Next, we find an upper bound for pm. Since ε =
H1/2L⊺

ψ ϵ̃, where ϵ̃ has i.i.d sub-Gaussian entries with mean 0 and variance 1, using the
Hoeffding’s inequality (Wainwright, 2019), we get

pm ≤ 2exp{− t2m
∥L⊺

ψHLψ∥2
}= 2exp(−(m∨ 1)(1 + c0) log p).(5)

Combining (4) and (5), we have

P
(
Ωcs0
)
≤

∞∑
m=0

2(m∨1)+1

(
p
m

)
(p−(1+c0))m∨1

≤ 4

p1+c0
+ 2

∞∑
m=1

2m
(
p
m

)
p−m(1+c0)

=
4

p1+c0
+ 2

(
(1 + 2p−(1+c0))p − 1

)
≤ 4

p1+c0
+ 2

(
exp(2p−c0)− 1

)
;(6)

here, we use the binomial theorem and the fact that limx→0(1 + x)1/x = e. Therefore, we
have P (Ωs0) = 1− P

(
Ωcs0
)
→ 1 as p→∞.

3. We use the techniques in the proof of Theorem 3 in Zhang et al. (2008) to bound∥∥∥β̃(λ)− β̃
∗∥∥∥

1
with the pre-specified η1 and λ. Recall that on the event Ωs0 , we have

|S1| ≤M∗
1 s0. Let X̌1 and X̌2, respectively, denote the the submatrix of X̌ with columns

indexed by S1 and Sc1. Similarly, let β̃
∗
1 and β̃

∗
2, respectively, denote the subvector of β̃

∗
with

entries indexed by S1 and Sc1; β̃1(λ) and β̃2(λ), respectively, denote the subvector of β̃(λ)
with entries indexed by S1 and Sc1; ∆1 and ∆2, respectively, denote the submatrix of ∆ with
both rows and columns indexed by S1 and Sc1. Since q∗ ≥M∗

1 s0 + 1, by Assumption (A3),

the vector v1 = X̌1∆
−1/2
1

(
β̃1(λ)− β̃

∗
1

)
satisfies

∥v1∥22 ≥ c∗n
∥∥∥∆−1/2

1 (β̃1(λ)− β̃
∗
1)
∥∥∥2
2
.(7)

Denoting by P1 the projection matrix onto the column space of X̌1, we have

∥v1∥2 ≤ ∥v1 +P1(ỹ− X̌1∆
−1/2
1 β̃1(λ))∥2 + ∥P1(ỹ− X̌1∆

−1/2
1 β̃1(λ))∥2

≤ ∥P1X̌2∆
−1/2
2 β̃

∗
2 +P1H

1/2Lψϵ∥2 + ∥P1(ỹ− X̌1∆
−1/2
1 β̃1(λ))∥2

≤ ∥X̌2∆
−1/2
2 β̃

∗
2∥2 + ∥P1H

1/2Lψϵ∥2 + n−1/2∥Σ−1/2
11 g1∥2,(8)

where Σ11 ≡ n−1X̌⊺
1X̌1, ỹ=H1/2y and g1 = X̌⊺

1

(
ỹ− X̌∆

−1/2
1 β̃(λ)

)
. Note that the KKT

conditions of eq. (13) in the main text yield that ∥g1∥∞ ≤ λ. Then, by Assumption (A3), we
have

∥Σ−1/2
11 g1∥2 ≤ c

−1/2
∗ ∥g1∥∞

√
|S1| ≤ λ(M∗

1 s0/c∗)
1/2.

Also, since Sc1 ⊂ Sc0, ∥Xdj∥2H = n, and ∥Q∥2 = 1, we have ∥X̌2∆
−1/2
2 β̃

∗
2∥2 ≤

√
nη1. We

next find an upper bound for ∥P1H
1/2Lψϵ∥2. Using the Hanson-Wright inequality (Theorem

2.1 in Rudelson et al., 2013), we have

P
(
∥P1H

1/2L⊺
ψϵ̃∥2 ≥ ∥P1H

1/2L⊺
ψ∥F + t

)
≤ exp

{
− ct2

∥P1H1/2L⊺
ψ∥22

}
,(9)
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for some constant c. By properties of matrix norms, we have

∥P1H
1/2L⊺

ψ∥
2
2 ≤ ∥L⊺

ψHLψ∥2;∥P1H
1/2L⊺

ψ∥
2
F ≤ ∥L⊺

ψHLψ∥2|S1|;

here, we use the facts that ∥P1∥2 = 1 and ∥P1∥F = |S1|. Thus,

P
(
∥P1H

1/2L⊺
ψ ϵ̃∥2 ≥

√
∥L⊺

ψHLψ∥2|S1|+ t
)
≤ exp

{
− ct2

∥L⊺
ψHLψ∥2

}
.

Letting t2 = ∥L⊺
ψHLψ∥2|S1| log p, there exists a Borel set Ω̃ with P

(
Ω̃
)
→ 1 as p→ ∞,

such that on this set

∥P1H
1/2L⊺

ψϵ̃∥2 ≤
√

∥L⊺
ψHLψ∥2|S1|

(
1 +

√
log p

)
.(10)

Therefore, on the event Ωs0 ∩ Ω̃, we have

∥P1H
1/2L⊺

ψ ϵ̃∥2 ≤
√

∥L⊺
ψHLψ∥2M∗

1 s0

(
1 +

√
log p

)
.

Thus,∥∥∥∆−1/2
1

(
β̃1(λ)− β̃

∗
1

)∥∥∥
2
≤ (c∗n)

−1/2∥v1∥2

≤ c
−1/2
∗ η1 + n−1/2

√
∥L⊺

ψHLψ∥2M∗
1 s0

(
1 +

√
log p

)
+ n−1/2λ

(
M∗

1 s0
nc∗

)1/2

.(11)

Since λ= 2
√

2c∗n log p(1 + c0)∥L⊺
ψHLψ∥2, ∥L⊺

ψHLψ∥2 = σ2+o(1), η1 =O
(√

n−1s0 log p
)

and M∗
1 =O(1), we have∥∥∥β̃1(λ)− β̃

∗
1

∥∥∥
2
≤
∥∥∥∆1/2

1

∥∥∥
2

∥∥∥∆−1/2
1

(
β̃1(λ)− β̃

∗
1

)∥∥∥
2
=Op

(√
n−1s0 log p

)
.

Therefore,

∥β̃1(λ)− β̃
∗
1∥1 ≤

√
s0∥β̃1(λ)− β̃

∗
1∥2 =Op

(
s0
√
n−1 log p

)
.

Finally,

∥β̃(λ)− β̃
∗
∥1 ≤ ∥β̃1(λ)− β̃

∗
1∥1 + η1 =Op

(
s0
√
n−1 log p

)
.

This completes the proof.

Now we use Lemma 3.1 to prove Theorem 3.3. First, note that since s0 = o ((n/ log p)r)
for some r ∈ (0,1/2), we have

(12)
∥∥∥β̃∗

− β̃(λ)
∥∥∥
1
= op

{(
log p

n

)1/2−r
}
.

Thus,

|ζj(hj)|=

∣∣∣∣∣
p∑

m=1

ξwjm
(
β∗m − βinitm

)
−
(
(1− hj)ξ

w
jj + hj

) (
β∗j − βinitj

)∣∣∣∣∣
=
∣∣∣[(QVWV⊺ − (1− hj)Ξ− hjIp)

(
β∗ −βinit

)]
j

∣∣∣
≤
∥∥∥[(QVWV⊺ − (1− hj)Ξ− hjIp)D](j,·)

∥∥∥
∞

∥∥∥β̃∗
− β̃(λ)

∥∥∥
1
.(13)
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Combining (12) and (13), it can be seen that

lim
n→∞

Pr

{
|ζj(hj)| ≤

∥∥∥[(QVWV⊺ − (1− hj)Ξ− hjIp)D](j,·)

∥∥∥
∞

(
log p

n

)1/2−r
}

= 1.

Finally, Theorem 3.3 directly follows from Propositions 3.1 and 3.2.

4. Proof of Theorem 3.4. We first note that Pwj (hj)≤ α is equivalent to∣∣∣β̂wj (hj)∣∣∣≥Ψj(hj) + q(1−α/2)

√
Rwjj .

Since
∣∣∣β̂wj (hj)∣∣∣= ∣∣∣((1− hj)ξ

w
jj + hj

)
β∗j + ζj(hj) + zwj

∣∣∣, we have

Pr
{∣∣∣β̂wj (hj)∣∣∣≥Ψj(hj) + q(1−α/2)

√
Rwjj

}
≥

Pr
{∣∣((1− hj)ξ

w
jj + hj

)
β∗j
∣∣− |ζj(hj)| − |zwj | ≥Ψj(hj) + q(1−α/2)

√
Rwjj

}
.

Hence, it suffices to show that as n→∞,

Pr
{∣∣((1− hj)ξ

w
jj + hj

)
β∗j
∣∣− |ζj(hj)| − |zwj | ≥Ψj(hj) + q(1−α/2)

√
Rwjj

}
≥ ψ.(14)

Since (Rwjj)
−1/2zwj

d→N(0,1) as n→∞, if

(15)

∣∣∣((1− hj)ξ
w
jj + hj

)
β∗j

∣∣∣− |ζj(hj)| −Ψj(hj)− q(1−α/2)
√
Rwjj√

Rwjj

≥ q(1−ψ/2),

then (14) holds. Since limn→∞Pr(|ζj(hj)| ≤Ψj(hj)) = 1 (Theorem 3.3), we know that as
n→∞, (15) holds if∣∣β∗j ∣∣≥ |(1− hj)ξ

w
jj + hj |−1

(
2Ψj(hj) +

(
q(1−α/2) + q(1−ψ/2)

)√
Rwjj

)
;

this completes the proof of Theorem 3.4.
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