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Abstract Current advances in geroscience are due 
in part to the discovery of biomarkers with high pre-
dictive ability in short-lived laboratory animals such 
as flies and mice. These model species, however, do 
not always adequately reflect human physiology and 
disease, highlighting the need for a more comprehen-
sive and relevant model of human aging. Domestic 
dogs offer a solution to this obstacle, as they share 
many aspects not only of the physiological and path-
ological trajectories of their human counterpart, but 
also of their environment. Furthermore, they age at a 

considerably faster rate. Studying aging in the com-
panion dog provides an opportunity to better under-
stand the biological and environmental determinants 
of healthy lifespan in our pets, and to translate those 
findings to human aging. Biobanking, the systematic 
collection, processing, storage, and distribution of 
biological material and associated data has contrib-
uted to basic, clinical, and translational research by 
streamlining the management of high-quality bio-
specimens for biomarker discovery and validation. In 
this review, we discuss how veterinary biobanks can 
support research on aging, particularly when inte-
grated into large-scale longitudinal studies. As an 
example of this concept, we introduce the Dog Aging 
Project Biobank.
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Introduction

With a growing global life expectancy and increased 
incidence of chronic disease [1], caring for an 
expanding geriatric population has revealed a need 
for a deeper understanding surrounding the biology 
of aging. Decades of studies that relied on laboratory 
organisms, including yeast, nematode worms, fruit 
flies, and mice, have taught us a great deal about the 
underlying molecular mechanisms of aging, and the 
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pathways that appear to show deep evolutionary con-
servation [2, 3].

However, these discoveries have been made 
mostly under highly controlled experimental set-
tings, with model systems that typically display little 
to no genetic or environmental variation. As a result, 
numerous drug candidates that demonstrated efficacy 
and safety in model organisms have failed in human 
clinical trials [4–8]. It remains therefore unclear to 
what extent these laboratory-based discoveries can 
apply to variation in aging-related traits in natural 
populations [9, 10].

To investigate more accurately the mechanisms of 
human aging, the scientific community has started to 
shift away from traditional laboratory models towards 
more evolutionarily and ecologically relevant sponta-
neous model organisms such as the companion dog 
[11]. Dogs display a highly similar physiological and 
pathological aging trajectory to their human coun-
terparts, and are exposed to the same environmental 
factors [9]. Moreover, canines age more rapidly, mak-
ing them a promising model for studies on aging [9]. 
The use of canine biomarkers as a minimally invasive 
way to connect genetic, environmental, and lifestyle 
factors to morbidity, mortality, and health in dogs 
could help us better understand the causes and conse-
quences of aging in human populations [12–15]. The 
success of these endeavors relies heavily on reliable 
access to high-quality canine biospecimens, and vet-
erinary biobanks can provide invaluable support to 
scientists in this context.

Modern biobanks are able to support proteomics-, 
metabolomics-, and epigenomics-based translational 
research by specializing in the standardization of 
the processes that create high-quality biospecimens 
and associated data [16–19]. As the largest propor-
tions of errors in laboratory activities occur during 
the preanalytical phase, utilizing the standardized 
procedures and quality management systems imple-
mented by biobanks can reduce the technical vari-
ability of an experiment and improve scientific rigor 
and reproducibility [20–23]. Population- and disease-
driven biobanks, and particularly those accredited 
to an international standard that ensures the qual-
ity of their biospecimens and associated data [24], 
have already proven to be longstanding and valu-
able partners in precision medicine [25]. Recently, 
veterinary biobanks have emerged as a key resource 
not only for studies of domestic animals, but also for 

the improvement of public health in human popula-
tions [26], through the translational potential of the 
research they enable. State-of-the-art veterinary 
biobanking facilities can further contribute to accu-
rate, reproducible research results by adopting best 
practices and/or international standards [27] and fol-
lowing standard operating procedures, as well as 
international and governmental regulations to ethi-
cally collect samples from domestic dogs [20–24]. 
By integrating veterinary biobanking into large-scale 
studies on aging, we can better bridge the longstand-
ing gap between translational research and clinical 
practice in geroscience [28]. We propose that veteri-
nary biobanks can enhance translational research of 
aging by improving access to high-quality, clinically 
annotated biospecimens.

In this review, we will illustrate this concept using 
the official biobank of the Dog Aging Project, a long-
term longitudinal study of companion dogs designed 
to discover the biological and environmental determi-
nants of healthy aging [28, 29].

Research models of aging

Aging is a multi-faceted process that depends on 
interconnecting factors. The complexity of the aging 
process poses challenges to the pursuit of novel inter-
ventions and drug therapies. Human epidemiologic 
studies looking to extend healthspan focus primarily 
on aspects of lifestyle and are not able to sufficiently 
address all aspects of aging-related diseases [30]. 
While a person’s genetics, environment, and socio-
economic status can reveal insight into the suscepti-
bility for disease and the potential for healthy aging, 
further model-based research is needed to better 
understand the underlying mechanisms of aging in 
natural populations [28, 31]. Whereas in  vivo stud-
ies in humans have limitations, animal models offer a 
practical alternative to studying aging at the molecu-
lar, cellular, tissue, and organism level.

Animal models have been useful in helping us to 
better understand aging and age-related disorders. 
Studies in model organisms such as yeast, nematodes, 
fruit flies, and mice have successfully established that 
lifespan can be increased substantially by mutating 
specific genes [2, 32–37]. Lifespan and the causes 
of mortality vary greatly among species, making no 
one animal the perfect model to study aging [38–41]. 
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Despite that variation, classic vertebrate and inver-
tebrate animal models have led to the identification 
of several interventions that appear to work across 
diverse species, and which may ultimately lead to 
treatments that delay human aging, prevent disease 
onset and/or progression, and allow humans to main-
tain functional capacity in the later stages of life [2, 
30, 42–44]. Invertebrate models have played a critical 
role in geroscience, including as models of specific 
age-related organ pathologies (e.g., heart and brain); 
yet, their anatomical and physiological differences 
compared to mammals somewhat limit their trans-
lational use as a model species for humans [45, 46]. 
Evolutionarily, vertebrate animal models have proven 
to have a closer proximity to humans in regards to 
their physiology and cellular function [47, 48], and in 
some cases, species-specific mechanisms for lifespan 
might inform our understanding of means of increas-
ing human healthspan [49, 50].

Vertebrate animals have a longstanding place in 
biomedical research and provide promising insight to 
better understand the fundamentals of disease for the 
development of diagnostic and therapeutic innova-
tions [51–53]. Over 95% of all studies of animals use 
mice as the research model [51], as they are relatively 
easy to maintain, economical, and genetically stand-
ardized. Mice have also proven a powerful model for 
aging research, including recent efforts to develop a 
“geropathology” for mice, but laboratory mice do not 
reflect the genetic and environmental variation that 
characterizes human populations [54]. Moreover, we 
generally lack the tools to determine ultimate causes 
of mortality in mice—tools that we have available 
not only in humans, but also in companion animals. 
The murine model also faces a number of challenges 
in the translation to safe and efficacious treatment 
options for humans [55–58]. While non-human pri-
mates may represent the most biologically similar 
model of human aging, the expense associated with 
husbandry in combination with their long lifespan 
makes them more logistically challenging for longitu-
dinal studies of age-related changes [38, 59–61].

Despite the widely accepted practice of using tra-
ditional animal models in research, there is a funda-
mental gap in our ability to translate findings from 
studies in highly controlled laboratory settings to 
genetically diverse humans living in a complex envi-
ronment. Aging as an intricate process demands a 
more realistic and reliable animal model to predict 

clinical outcomes [62, 63]. In this review, we discuss 
the potential for unlocking the underlying mecha-
nism of aging and disease by exploring the mutualis-
tic relationship humans share with the domestic dog 
(Canis familiaris).

The companion dog as a research model

Canines and humans share numerous similarities that 
make dogs a promising translational model for iden-
tifying risk factors that influence longevity [11, 64, 
65]. Companion dogs experience patterns of actuarial 
aging and age-trajectories analogous to humans, and 
share the same environment, including exposure to 
the same food, water, and air as their human owners, 
which often impart similar risks for disease in both 
species [11, 28, 66]. Like humans, they are highly 
genetically variable, and have access to a health care 
system almost as sophisticated as human medical 
care. As a result of living in close proximity for the 
past tens of thousands of years, we even see examples 
where dogs and humans have undergone convergent 
evolution as seen in genes related to environmental 
adaptation and diet [67, 68].

Many chronic illnesses and spontaneous diseases 
manifest with similar clinical presentation, molecular, 
and immunophenotypic composition in humans and 
dogs, covering a wide range of physiological systems 
[69]: cardiovascular diseases including congestive heart 
failure [70] and pulmonary hypertension [71]; renal dis-
eases including chronic kidney disease [72];  gastroin-
testinal diseases including inflammatory bowel disease 
[73], idiopathic chronic hepatitis [74], and pancreati-
tis [75]; endocrine disorders including type 1 diabetes 
[76], Addison’s disease [77], and Cushing’s syndrome 
[78]; and cancers including lymphoma [79], melanoma 
[80], and osteosarcoma [81]. Furthermore, the dog can 
serve as a translational model for human neurological 
disorders, such as polyneuropathy [82], epilepsy [83], 
and Alzheimer’s disease [84], and future plans for 
research in canine cognitive dysfunction will continue 
to expand the dog’s translational potential [85].

The “One Health” initiative centers on the detec-
tion, treatment, and prevention of disease through 
the connectivity of humans, animals, and the envi-
ronment. The historical use of the domestic dog as a 
model for human diseases highlights the way aging 
research can benefit from the application of the “One 
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Health” principles. Connecting the shared character-
istics of companion dogs and humans increases the 
predictability of preclinical study outcomes in ways 
not possible with laboratory animals [86].

Approximately 80 million households in the USA 
own at least one companion dog, representing a large 
population that has a vested interest in maintain-
ing their health [38]. Studies in companion animals 
have value not only for what they can teach us about 
human disease, but also for their direct benefits to 
veterinary medicine, dogs, and their owners. Incor-
porating translational findings in veterinary clinical 
practice will amplify our current abilities to identify 
early signs and enhance our screening procedures for 
age-related disease, allowing the adoption of vari-
ous early interventions in the companion dog [38, 
87]. The use of the companion dog as a translational 
research model for health, longevity, and aging in 
humans also provides an opportunity to gain knowl-
edge that potentially could extend the life and health-
span of dogs, increasing the quality time they spend 
with their owners in their aging years. Pet owners 
genuinely value the bond that they share with their 
pet, and veterinarians strive to enhance the physical 
and mental health of older dogs [88]; involvement 
from both owners and veterinarians could result in 
beneficial contributions to translational research.

Voluntary owner participation, including the col-
lection of biospecimens with a robust informed con-
sent process, safeguards the dogs’ best interests and 
enables geroscientists to use the companion dog as a 
model for both observational and interventional stud-
ies of aging. By utilizing domestic dogs in transla-
tional research for aging and age-related diseases, 
they can contribute towards improving public health 
as part of the “One Health” initiative. High-quality 
specimens from donor dogs are critical to the suc-
cess of translational research, making them a valu-
able addition to the translational research model 
landscape.

Biobanking in support of research

Biobanks are entities that receive, process, store, 
and distribute biospecimens and associated data 
from a population or subset of a population [89]. 
Many hold specimens of great value to research, 
precision medicine, and the advancement of 

biotechnology [90]. Biobanks can be classified 
either as “population-based” or “disease-oriented” 
[91], or according to the type of research they intend 
to support (e.g., population study, basic research, 
translational study, clinical trial, or pathology 
archive biobanks) [92]. Formal biobanks differ from 
other types of research collections by having estab-
lished governance mechanisms in place for their 
operations and distribution to external users [93]. 
By providing standardized, high-quality services 
for the collection, acquisition, transport, processing, 
storage, and distribution of biological materials, 
biobanks can improve the traceability, authenticity, 
and fitness-for-purpose of specimens used for rigor-
ous and reproducible research [94].

It is generally accepted that the more accurate and 
comprehensive the annotation of specimens, the more 
valuable and effective the research utilizing them will 
be. In addition to storing high-quality biospecimens, 
biobanks also collect and store vast amounts of data, 
which can be broadly grouped into three categories 
[95]. The first category pertains to descriptive data 
regarding the donor and the specimens; it includes 
demographic, phenotypic, and clinical data of the 
donor, and categorization of the specimen types and 
collection sites. Through the anonymization and de-
identification of records, this information can be passed 
on to researchers while maintaining the privacy of the 
donors. The second category consists of preanalytical 
data, which includes the procedures and conditions for 
the collection, processing, transportation, and storage 
of biospecimens. As preanalytical processes can have a 
critical impact on the fitness and integrity of specimens, 
it is critical to capture as much information as possible 
to make informed decisions about the use of the speci-
mens and to correctly interpret results derived from 
the downstream analysis of these specimens [96, 97]. 
The third category is made up of data resulting from 
the analysis of the biospecimens, including genomic, 
metabolomic, proteomic, and other “-omics” data, as 
well as digital bioimaging and other data generated dur-
ing research. Making the data available to researchers to 
use for retrospective analysis increases the value of the 
specimens and decreases sample collection and analysis 
redundancies. By capturing, storing, and distributing all 
the data associated with banked specimens, biobanks 
are uniquely positioned to add value to clinical and 
translational research [98] while reducing experimental 
bias and duplication of study efforts.
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Since the emergence of translational research 
as a field in the 1990s, biobanks have evolved as a 
research resource for human specimens and data [99]. 
A 2010 review noted that, at that time, biobanks had 
been involved in approximately 40% of all cancer 
research papers [100]. In the last decade, there has 
been increasing recognition of the important role of 
biobanks in translational medicine and, in particu-
lar, for developing novel therapeutics [16]. Biobanks 
are impactful resources and the cornerstone of future 
investigations into biomarker discovery, given their 
critical role in standardizing high-quality biospeci-
mens [101]. For example, the detection of cerebro-
spinal fluid and blood biomarkers for Alzheimer’s 
disease [102], serum biomarkers for prostate, lung, 
colorectal, and ovarian cancers [103], and plasma 
markers for heart failure [104] was made possible by 
the use of biobank materials. In turn, effective bio-
marker identification is critical for improved diagno-
sis and prognosis of disease [91]. A mutual relation-
ship has been formed between biobanks and precision 
medicine initiatives through the development of 
patient-derived xenografts and patient-derived orga-
noids [105, 106], providing relevant preclinical mod-
els for confirming therapeutic efficacy or testing new 
treatments [107]. Through a systematic approach to 
sample/data acquisition, analysis, technical valida-
tion, and transparent sharing of biological and clinical 
data, new pathways are being forged in biomedical 
research [91].

Veterinary biobanking and translational research

Non-human animal biobanks can be found asso-
ciated with veterinary hospitals, zoos, museums, 
genetic resource gene banks, and research institu-
tions. Though they make up a small fraction of the 
biobanking sector [26], they play a critical role in 
clinical research, environmental conservation efforts, 
and food production [108–110]. While veterinary 
biobanks have the potential to supply the research 
community with valuable biological specimens from 
a variety of species, they remain a relatively untapped 
resource [111].

Similarly to how human biospecimens are col-
lected through hospitals and clinical settings, vet-
erinary clinical facilities play an important role in 
the collection of biospecimens from animals. The 

healthcare infrastructure of veterinary medicine, 
which consists of general practitioners and special-
ists, closely mirrors human medicine, and the prin-
ciples of biobanking are applicable to both sectors. 
Ethical principles and values, particularly informed 
consent and patient confidentiality, play a vital role 
in all domains of biobanking [112]. However, less 
rigid laws and guidelines in veterinary biobanking 
allow for more sampling opportunities to build a col-
lection capable of accelerating the development of 
novel therapies. Furthermore, owners are more likely 
to permit collection of samples from their companion 
animals than they are from themselves, giving them 
an alternative opportunity to contribute to transla-
tional research [113].

The enrollment of a large cohort of specimen 
donors with frequent collection opportunities has the 
potential of accelerating the speed at which novel 
research could be translated into clinical practice. 
As a result, veterinary biobanks have emerged as a 
network of resources to study health and longevity 
[26]. For example, the Australian Veterinary Cancer 
Biobank obtains its samples from a network of 47 vet-
erinary clinics through the use of a specialized tumor 
collection kit, increasing the likelihood that these 
specimens are used for research by providing inves-
tigators large collections of fit-for-purpose specimens 
[114]. These networks can also operate on an inter-
national scale, as demonstrated by the LUPA project, 
a European Commission-funded collaboration of 22 
veterinary research institutions from 12 countries 
aiming to collect canine biospecimens of relevance to 
human health [115].

Veterinary biobanks support research not only for 
non-human animals, but also for translational efforts 
that can advance human medicine in alignment with 
the “One Health” initiative [116]. One such exam-
ple, the Munich MIDY-PIG Biobank in Germany, is 
a pioneer in veterinary translational research, banking 
porcine tissue specimens for human diabetes research 
[17]. Similarly, canine biobanks have supported the 
development of a new high-density single nucleotide 
polymorphism array, leading to identification of vari-
ants relevant to monogenic diseases in humans [115], 
further supporting the idea that the domestic dog is an 
excellent model for gene mapping of simple and com-
plex diseases in humans [84, 117–119]. Furthermore, 
animal registries, such as the Swiss Canine Cancer 
Registry, can also contribute to translational research 
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by compiling and providing vast quantities of curated 
data of a target population which can be used as refer-
ences for veterinary and human medicine [120].

As the dog develops into a promising model for 
human aging, veterinary biobanks solidify themselves 
as an essential component of the future of transla-
tional research [121]. By combining the serial col-
lection of high-quality specimens from canine par-
ticipants over the course of their lifespan, with the 
utilization of internationally accredited veterinary 
biobanks, canine population-based and disease-spe-
cific studies are uniquely positioned to shift current 
research and clinical paradigms in geroscience.

The Dog Aging Project

The Dog Aging Project (DAP) is the first large-scale 
longitudinal study to follow a diverse cohort of com-
panion dogs, including mixed breed and purebred 
dogs, throughout their lifespan. This unique National 
Institute on Aging–funded study is designed to col-
lect molecular, environmental, and lifestyle informa-
tion from a large, diverse population of dogs across 
the USA, with the goals of understanding the biologi-
cal and environmental determinants of healthy aging 
in companion dogs, and investigating potential treat-
ments for increasing their healthspan [29]. In addition 
to being an interdisciplinary collaboration involving 
over 20 academic institutions, the DAP is a community 
science project that relies heavily on the participation 
of dog owners and their primary care veterinarians to 
collect biospecimens and associated data. Further-
more, all data collected and generated by the DAP is 
made available as a public resource, allowing external 
researchers to perform ancillary studies.

Over the duration of this study, tens of thousands 
of companion dogs and their owners participate by 
answering annual health and life experience surveys 
that collect comprehensive information regarding the 
dog’s behavior, diet, use of medication and preventa-
tives, physical activity, environment, and health his-
tory [29]. At least 10,000 of these dogs also provide 
a cheek swab as a source of DNA for low-pass cov-
erage, whole genome sequencing. A subset of these 
dogs additionally provides biospecimens, includ-
ing blood products, feces, urine, and hair, for analy-
sis of the plasma metabolome, fecal microbiome, 
and peripheral blood mononuclear cell epigenome, 

flow cytometric profiles, and inflammaging assays. 
Residual samples are stored at the DAP Biobank, 
housed at the Cornell Veterinary Biobank (CVB), and 
made available with the associated data to research-
ers through a DAP ancillary study request. These 
biospecimens are expected to play a vital role in the 
discovery and validation of biomarkers in aging, 
and have the potential to solidify the companion 
dog as the ideal translational model for age-related 
conditions.

The CVB, a core resource of the Cornell Uni-
versity College of Veterinary Medicine, was the 
first biobank to be accredited to the International 
Organization for Standardization (ISO) normative 
reference ISO 20387:2018 General Requirements 
for Biobanking, having implemented a quality man-
agement system and standardized procedures for 
the collection, acquisition, quality testing, process-
ing, storage, and distribution of biological materials 
and associated data from non-human animals [24]. 
Since its inception in 2006, the CVB has supported 
research in canine genomics [122, 123], orthopedics 
[124, 125], and oncology [126, 127], including trans-
lational research using domestic dogs as models for 
human diseases [128]. By using the CVB to host the 
DAP Biobank, the DAP ensures that its biospecimens 
will be quality tested, authenticated, traceable, stored 
at appropriate temperatures, and distributed out to a 
wide range of researchers, both veterinary and trans-
lational, thereby amplifying the impact of the project.

Conclusion

Though we have witnessed tremendous progress in 
unraveling the complex biological process of aging 
using traditional model species, future scientific 
discovery and novel drug therapy will depend on a 
more predictive non-human animal model. Shared 
age-related changes and a communal living envi-
ronment make the companion dog a highly promis-
ing translational model for geroscience. Together 
with large-scale longitudinal studies such as the Dog 
Aging Project, veterinary biobanks have the transla-
tional potential to accelerate our understanding of 
aging, identify treatments that can extend the health-
span of dogs and humans, and improve public health. 
The success of these endeavors rests primarily on 
the collection, analysis, storage, and distribution of 
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high-quality canine biological specimens, which can 
be achieved by collaborating with accredited veteri-
nary biobanks such as the CVB. Looking towards the 
future, expanding ways to incorporate standardized 
biobanking operations into longitudinal studies will 
have a positive impact on the reliability and reproduc-
ibility of translational research and, in turn, have a 
positive impact on animal and human health.
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