Predictive Modeling of Compositional Data with Supervised Log-Ratios

Jing Ma
Division of Public Health Sciences
Fred Hutchinson Cancer Center

1 July 2022
ICSA China Conference

Compositional Data are Everywhere

Geology

Microbiome: Markey et al., Blood, 20

Sociology

Single cell transcriptomics

Compositional Data

A vector $X=\left(X_{1}, \ldots, X_{p}\right)$ representing proportions of some whole is subject to the constraint

$$
X_{1}+\cdots+X_{p}=1
$$

Compositional Data

A vector $X=\left(X_{1}, \ldots, X_{p}\right)$ representing proportions of some whole is subject to the constraint

$$
X_{1}+\cdots+X_{p}=1
$$

Predictive modeling

- Predictors $\boldsymbol{x}_{i}=\left(x_{i, 1}, \ldots, x_{i, p}\right)$: compositional
- Outcome y_{i} : continuous or binary

Compositional Data

A vector $X=\left(X_{1}, \ldots, X_{p}\right)$ representing proportions of some whole is subject to the constraint

$$
X_{1}+\cdots+X_{p}=1
$$

Predictive modeling

- Predictors $\boldsymbol{x}_{i}=\left(x_{i, 1}, \ldots, x_{i, p}\right)$: compositional
- Outcome y_{i} : continuous or binary

Scientific question:

- Define biomarker(s) using a small set of variables that predict disease risk

Compositional Data

A vector $X=\left(X_{1}, \ldots, X_{p}\right)$ representing proportions of some whole is subject to the constraint

$$
X_{1}+\cdots+X_{p}=1
$$

Predictive modeling

- Predictors $\boldsymbol{x}_{i}=\left(x_{i, 1}, \ldots, x_{i, p}\right)$: compositional
- Outcome y_{i} : continuous or binary

Scientific question:

- Define biomarker(s) using a small set of variables that predict disease risk

Challenges:

- The unit-sum constraint makes it difficult to interpret the effect of predictors on the response

Log-Contrast Models

Additive log-ratio transform:

$$
\operatorname{alr}(X)=\left(\log \frac{X_{1}}{X_{p}}, \ldots, \log \frac{X_{p-1}}{X_{p}}\right)
$$

Log-contrast regression:

$$
\mathbb{E}\left[y_{i} \mid \boldsymbol{x}_{i}\right]=\left(\boldsymbol{\theta}^{\mathrm{alr}}\right)^{\top} \operatorname{alr}\left(\boldsymbol{x}_{i}\right)
$$

[^0]
Log-Contrast Models

Additive log-ratio transform:

$$
\operatorname{alr}(X)=\left(\log \frac{X_{1}}{X_{p}}, \ldots, \log \frac{X_{p-1}}{X_{p}}\right)
$$

Log-contrast regression:

$$
\begin{aligned}
\mathbb{E}\left[y_{i} \mid \boldsymbol{x}_{i}\right]=\left(\boldsymbol{\theta}^{\text {alr }}\right)^{\top} \operatorname{alr}\left(\boldsymbol{x}_{i}\right) & =\boldsymbol{\beta}^{\top} \log \left(\boldsymbol{x}_{i}\right), \\
& \text { subject to } \boldsymbol{\beta}^{\top} 1=0 .
\end{aligned}
$$

[^1]
Log-Contrast Models

Additive log-ratio transform:

$$
\operatorname{alr}(X)=\left(\log \frac{X_{1}}{X_{p}}, \ldots, \log \frac{X_{p-1}}{X_{p}}\right)
$$

Log-contrast regression:

$$
\begin{aligned}
\mathbb{E}\left[y_{i} \mid \boldsymbol{x}_{i}\right]=\left(\boldsymbol{\theta}^{\text {alr }}\right)^{\top} \operatorname{alr}\left(\boldsymbol{x}_{i}\right) & =\boldsymbol{\beta}^{\top} \log \left(\boldsymbol{x}_{i}\right), \\
& \text { subject to } \boldsymbol{\beta}^{\top} 1=0 .
\end{aligned}
$$

High-dimensional extensions: compositional Lasso ${ }^{1}$, tree-guided compositional Lasso ${ }^{2}$

[^2]
Log-Contrast Models

Additive log-ratio transform:

$$
\operatorname{alr}(X)=\left(\log \frac{X_{1}}{X_{p}}, \ldots, \log \frac{X_{p-1}}{X_{p}}\right)
$$

Log-contrast regression:

$$
\begin{aligned}
\mathbb{E}\left[y_{i} \mid \boldsymbol{x}_{i}\right]=\left(\boldsymbol{\theta}^{\text {alr }}\right)^{\top} \operatorname{alr}\left(\boldsymbol{x}_{i}\right) & =\boldsymbol{\beta}^{\top} \log \left(\boldsymbol{x}_{i}\right), \\
& \text { subject to } \boldsymbol{\beta}^{\top} 1=0 .
\end{aligned}
$$

High-dimensional extensions: compositional Lasso ${ }^{1}$, tree-guided compositional Lasso ${ }^{2}$

Limitation: alr coefficients need to be interpreted w.r.t. a reference variable, while constrained regression suffers from prediction accuracy.

[^3]
Log-Ratio Regression

Pairwise log-ratios ${ }^{3}$

$$
\mathbb{E}\left[y_{i} \mid \boldsymbol{x}_{i}\right]=\sum_{1 \leq j<k \leq p} \theta_{j, k}^{\mathrm{plr}} \log \frac{x_{i, j}}{x_{i, k}}
$$

The log-contrast coefficient $\boldsymbol{\beta}=C^{\boldsymbol{T}} \boldsymbol{\theta}^{\text {plr }}$ where for $p=4$

$$
C^{\top}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0 & -1 & -1
\end{array}\right)
$$

Log-Ratio Regression

Pairwise log-ratios ${ }^{3}$

$$
\mathbb{E}\left[y_{i} \mid \boldsymbol{x}_{i}\right]=\sum_{1 \leq j<k \leq p} \theta_{j, k}^{\mathrm{plr}} \log \frac{x_{i, j}}{x_{i, k}}
$$

The log-contrast coefficient $\boldsymbol{\beta}=C^{\boldsymbol{T}} \boldsymbol{\theta}^{\text {plr }}$ where for $p=4$

$$
C^{\top}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0 & -1 & -1
\end{array}\right)
$$

Limitation: this model is not identifiable due to co-linearity of predictors, e.g.

$$
\log \frac{X_{1}}{X_{2}}, \quad \log \frac{X_{1}}{X_{3}}, \quad \log \frac{X_{2}}{X_{3}}
$$

Balance Regression

Balance is the log-ratio between two geometric means

$$
B\left(X ; I_{+}, I_{-}\right)=\log \frac{g\left(X_{I_{+}}\right)}{g\left(X_{I_{-}}\right)}=\frac{\sum_{j \in I_{+}} \log X_{j}}{\left|I_{+}\right|}-\frac{\sum_{j \in I_{-}} \log X_{j}}{\left|I_{-}\right|}
$$

Balance regression searches for the best subsets I_{+}and I_{-}:

$$
\mathbb{E}\left[y_{i} \mid \boldsymbol{x}_{i}\right]=\theta_{0}+\theta_{1} B\left(\boldsymbol{x}_{i} ; I_{+}, I_{-}\right)
$$

Balance Regression

Balance is the log-ratio between two geometric means

$$
B\left(X ; I_{+}, I_{-}\right)=\log \frac{g\left(X_{I_{+}}\right)}{g\left(X_{I_{-}}\right)}=\frac{\sum_{j \in I_{+}} \log X_{j}}{\left|I_{+}\right|}-\frac{\sum_{j \in I_{-}} \log X_{j}}{\left|I_{-}\right|}
$$

Balance regression searches for the best subsets I_{+}and I_{-}:

$$
\mathbb{E}\left[y_{i} \mid \boldsymbol{x}_{i}\right]=\theta_{0}+\theta_{1} B\left(\boldsymbol{x}_{i} ; I_{+}, I_{-}\right)
$$

selbal ${ }^{4}$ uses greedy search to find the best subsets by adding one variable at a time from the best k-part balances for $k \geq 2$.

Balance Regression

Balance is the log-ratio between two geometric means

$$
B\left(X ; I_{+}, I_{-}\right)=\log \frac{g\left(X_{I_{+}}\right)}{g\left(X_{I_{-}}\right)}=\frac{\sum_{j \in I_{+}} \log X_{j}}{\left|I_{+}\right|}-\frac{\sum_{j \in I_{-}} \log X_{j}}{\left|I_{-}\right|}
$$

Balance regression searches for the best subsets I_{+}and I_{-}:

$$
\mathbb{E}\left[y_{i} \mid \boldsymbol{x}_{i}\right]=\theta_{0}+\theta_{1} B\left(\boldsymbol{x}_{i} ; I_{+}, I_{-}\right)
$$

selbal ${ }^{4}$ uses greedy search to find the best subsets by adding one variable at a time from the best k-part balances for $k \geq 2$.
selbal prioritizes sparse models, but exhaustive search is time consuming.

Balance Regression

$\mathrm{CoDaCoRe}{ }^{5}$ uses continuous relaxation to find the best subsets. For a vector of assignment weights \boldsymbol{w}, let

$$
\widetilde{\boldsymbol{w}}=\frac{2}{1+\exp (-\boldsymbol{w})}-1
$$

Let $\widetilde{\boldsymbol{w}}^{+}=\operatorname{ReLU}(\widetilde{\boldsymbol{w}})$ and $\widetilde{\boldsymbol{w}}^{-}=\operatorname{ReLU}(-\widetilde{\boldsymbol{w}})$. The relaxed balance is

$$
\widetilde{B}(X ; \boldsymbol{w})=\frac{\sum_{j} \widetilde{w}_{j}^{+} \log X_{j}}{\sum_{j} \widetilde{w}_{j}^{+}}-\frac{\sum_{j} \widetilde{w}_{j}^{-} \log X_{j}}{\sum_{j} \widetilde{w}_{j}^{-}}
$$

Balance Regression

$\mathrm{CoDaCoRe}{ }^{5}$ uses continuous relaxation to find the best subsets. For a vector of assignment weights \boldsymbol{w}, let

$$
\widetilde{\boldsymbol{w}}=\frac{2}{1+\exp (-\boldsymbol{w})}-1
$$

Let $\widetilde{\boldsymbol{w}}^{+}=\operatorname{ReLU}(\widetilde{\boldsymbol{w}})$ and $\widetilde{\boldsymbol{w}}^{-}=\operatorname{ReLU}(-\widetilde{\boldsymbol{w}})$. The relaxed balance is

$$
\widetilde{B}(X ; \boldsymbol{w})=\frac{\sum_{j} \widetilde{w}_{j}^{+} \log X_{j}}{\sum_{j} \widetilde{w}_{j}^{+}}-\frac{\sum_{j} \widetilde{w}_{j}^{-} \log X_{j}}{\sum_{j} \widetilde{w}_{j}^{-}}
$$

Hard thresholding

$$
\hat{I}_{+}=\left\{j: \widetilde{w}_{j}^{+}>\tau\right\}, \quad \hat{I}_{-}=\left\{j: \widetilde{w}_{j}^{-}<-\tau\right\}
$$

Balance Regression

$\mathrm{CoDaCoRe}{ }^{5}$ uses continuous relaxation to find the best subsets. For a vector of assignment weights \boldsymbol{w}, let

$$
\widetilde{\boldsymbol{w}}=\frac{2}{1+\exp (-\boldsymbol{w})}-1
$$

Let $\widetilde{\boldsymbol{w}}^{+}=\operatorname{ReLU}(\widetilde{\boldsymbol{w}})$ and $\widetilde{\boldsymbol{w}}^{-}=\operatorname{ReLU}(-\widetilde{\boldsymbol{w}})$. The relaxed balance is

$$
\widetilde{B}(X ; \boldsymbol{w})=\frac{\sum_{j} \widetilde{w}_{j}^{+} \log X_{j}}{\sum_{j} \widetilde{w}_{j}^{+}}-\frac{\sum_{j} \widetilde{w}_{j}^{-} \log X_{j}}{\sum_{j} \widetilde{w}_{j}^{-}}
$$

Hard thresholding

$$
\hat{I}_{+}=\left\{j: \widetilde{w}_{j}^{+}>\tau\right\}, \quad \hat{I}_{-}=\left\{j: \widetilde{w}_{j}^{-}<-\tau\right\}
$$

CoDaCoRe is efficient, but tends to select too many variables.

Our Framework: Supervised Log-Ratios

FRED HUTCH
Input: $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n$.

Step 1: Screen

Step 3: Cluster

Aitchison similarity

Step 4: Predict

Output: two subsets I_{+}, I_{-}of variables for defining the balance.

Step 1: Screen

Let $\boldsymbol{z}_{\boldsymbol{i}}$ denote the clr-transformed version of $\boldsymbol{x}_{\boldsymbol{i}}$, where

$$
Z=\left(\log \frac{X_{1}}{g(X)}, \ldots, \log \frac{X_{p}}{g(X)}\right)^{\top}
$$

Let $\boldsymbol{z}^{(j)}$ denote the vector of observations from the j-th variable. Variables are screened by thresholding their univariate effect on \boldsymbol{y} :

$$
\left|\frac{(\boldsymbol{y}-\overline{\boldsymbol{y}})^{\top}\left(\boldsymbol{z}^{(j)}-\overline{\boldsymbol{z}}^{(j)}\right)}{\left\|\boldsymbol{z}^{(j)}-\overline{\boldsymbol{z}}^{(j)}\right\|^{2}}\right|>\tau
$$

The threshold τ is chosen by cross-validation.

Step 3: Cluster

Let C_{τ} be the collection of indices containing selected variables.
The Aitchison variation on the reduced data matrix is defined as

$$
\hat{A}(\tau)_{j, k}=\frac{1}{n} \sum_{i=1}^{n}\left(\log \frac{x_{i, j}}{x_{i, k}}-\frac{1}{n} \sum_{i^{\prime}=1}^{n} \log \frac{x_{i^{\prime}, j}}{x_{i^{\prime}, k}}\right)^{2}, \quad j, k \in C_{\tau} .
$$

The Aitchison similarity is

$$
\hat{S}(\tau)_{j, k}=\max _{j^{\prime}, k^{\prime}}\left\{\hat{A}(\tau)_{j^{\prime}, k^{\prime}}\right\}-\hat{A}(\tau)_{j, k}, \quad j, k \in C_{\tau} .
$$

Clustering returns two subsets of variables for defining the balance.

A Latent Variable Model

$$
\begin{align*}
\log \frac{X_{j}}{X_{p}} & =\alpha_{0, j}+\alpha_{1, j} U+\epsilon_{j}, \quad j=\{1, \ldots, p\} \backslash\{p\} \tag{1}\\
y & =\beta_{0}+\beta_{1} U+\varepsilon \tag{2}
\end{align*}
$$

where for $c_{1}, c_{2}>0$ the coefficients $\alpha_{1, j}$ satisfy

$$
\begin{aligned}
\alpha_{1, j} & =0, \quad j \notin I_{+} \cup I_{-}, \\
\alpha_{1, j} & =c_{1}, \quad j \in I_{+}, \\
\alpha_{1, j} & =-c_{2}, \quad j \in I_{-}, \\
\sum_{j=1}^{p} \alpha_{1, j} & =0 .
\end{aligned}
$$

Here p is an inactive variable that belongs to $I_{0}=\{1, \ldots, p\} \backslash\left\{I_{+} \cup I_{-}\right\}$.

Connection with Balance

$$
B\left(X ; I_{+}, I_{-}\right)=\tilde{\alpha}_{0}+\left(c_{1}+c_{2}\right) U+\tilde{\epsilon},
$$

where

$$
\tilde{\alpha}_{0}=\frac{1}{\left|I_{+}\right|} \sum_{j \in I_{+}} \alpha_{0, j}-\frac{1}{\left|I_{-}\right|} \sum_{j \in I_{-}} \alpha_{0, j}, \quad \tilde{\epsilon}=\frac{1}{\left|I_{+}\right|} \sum_{j \in I_{+}} \epsilon_{j}-\frac{1}{\left|I_{-}\right|} \sum_{j \in I_{-}} \epsilon_{j} .
$$

The response y is also linear in $B\left(X ; I_{+}, I_{-}\right)$

$$
y=\beta_{0}-\tilde{\alpha}_{0} \frac{\beta_{1}}{c_{1}+c_{2}}+\frac{\beta_{1}}{c_{1}+c_{2}} B\left(X ; I_{+}, I_{-}\right)+\varepsilon-\frac{\beta_{1}}{c_{1}+c_{2}} \tilde{\epsilon} .
$$

Let $Z_{j}=\log \left(X_{j}\right)-\log g(X)$ denote the clr-transformed data. Then

$$
Z_{j}-\mathbb{E}\left[Z_{j}\right]=\alpha_{1, j} U+\frac{1}{p} \sum_{k=1}^{p}\left(\epsilon_{j}-\epsilon_{k}\right)
$$

\Rightarrow univariate regression can distinguish active from inactive variables

How It Works

Let $Z_{j}=\log \left(X_{j}\right)-\log g(X)$ denote the clr-transformed data. Then

$$
Z_{j}-\mathbb{E}\left[Z_{j}\right]=\alpha_{1, j} U+\frac{1}{p} \sum_{k=1}^{p}\left(\epsilon_{j}-\epsilon_{k}\right)
$$

\Rightarrow univariate regression can distinguish active from inactive variables
Aitchison Variation

$$
\operatorname{Var}\left(\log \frac{X_{j}}{X_{k}}\right)= \begin{cases}2 \sigma_{\epsilon}^{2} & j \in I_{+}, k \in I_{+} \\ \left(c_{1}+c_{2}\right)^{2} \sigma_{U}^{2}+2 \sigma_{\epsilon}^{2} & j \in I_{+}, k \in I_{-} \\ 2 \sigma_{\epsilon}^{2} & j \in I_{-}, k \in I_{-}\end{cases}
$$

\Rightarrow clustering can distinguish variables in I_{+}from those in I_{-}

Simulation with Continuous Response

$$
n=100, p=30 ; I_{+}=\{1,2,3,4\}, I_{-}=\{5\}
$$

Method
selbal
classo

Simulation with Binary Response

$$
n=100, p=30 ; I_{+}=\{1,2,3,4\}, I_{-}=\{5\}
$$

Method
selbal

Classification of Crohn's Disease

$n=975 ; p=48$ genera; y is binary with 662 cases

- Selbal is the most accurate and also the most time consuming.
- classo does well in AUC, but returns a non-sparse model.
- SLR with spectral clustering and CoDaCoRe are comparable.

Classification of HIV Status

$n=155 ; p=60$ genera; y is binary with 128 cases

- SLR selects a sparser model than CoDaCoRe.
- selbal is the most time consuming.
- classo do not perform well. Irlasso is the most sparse.

Microbiome and sCD14 Inflammation

$n=151 ; p=60$ genera; y is continuous

Taxa	selbal	codacore-1	lrlasso-1	lrlasso-2	slr-spec	slr-hier
"g_Faecalibacterium"					+	+
"f_Ruminococcaceae_g_unclassified"					+	+
"g_Subdoligranulum"	+	+	+		+	+
"g_Thalassospira"	+	+			+	$+$
"f_Defluviitaleaceae_g_Incertae_Sedis"		+			+	+
"f_Lachnospiraceae_g_Incertae_Sedis"	+			$+$		+
"g_Dorea"	+					
"g_Dialister"		+				
"f_Lachnospiraceae_g_unclassified"	-	-	-		+	$+$
'g_Catenibacterium'		-			-	-
"g_Mitsuokella"		-			-	-
"g_Bifidobacterium"	-	-			-	-
"g_Collinsella"	-	-		-	-	-
"g_Lachnospira"	-	-				
"k_Bacteria_g_unclassified"		-				
"g_Ruminococcus"		-				
"g_Megasphaera"		-				
"g_Sutterella"		-				
"o_Clostridiales_g_unclassified"		-				

Summary

- Supervised log-ratio can efficiently predict health outcomes from compositional data.
- SLR leads to interpretable biomarker selection.
- SLR can be extended to semi-supervised settings.

Summary

- Supervised log-ratio can efficiently predict health outcomes from compositional data.
- SLR leads to interpretable biomarker selection.
- SLR can be extended to semi-supervised settings.
- SLR requires proper zero handling.

Summary

- Supervised log-ratio can efficiently predict health outcomes from compositional data.
- SLR leads to interpretable biomarker selection.
- SLR can be extended to semi-supervised settings.
- SLR requires proper zero handling.
- Selection of more than one balance?

Kristyn Pantoja @TAMU

David Jones @Google

Thank You!

https://drjingma.com

[^0]: ${ }^{1}$ Lin et al., Biometrika, 14'; Shi et al., AOAS, 16'
 ${ }^{2}$ Wang and Zhao, AOAS, 17'; Bien et al., Scientific Reports, 21'

[^1]: ${ }^{1}$ Lin et al., Biometrika, 14'; Shi et al., AOAS, 16'
 ${ }^{2}$ Wang and Zhao, AOAS, 17'; Bien et al., Scientific Reports, 21'

[^2]: ${ }^{1}$ Lin et al., Biometrika, 14'; Shi et al., AOAS, 16'
 ${ }^{2}$ Wang and Zhao, AOAS, 17'; Bien et al., Scientific Reports, 21'

[^3]: ${ }^{1}$ Lin et al., Biometrika, 14'; Shi et al., AOAS, 16'
 ${ }^{2}$ Wang and Zhao, AOAS, 17'; Bien et al., Scientific Reports, 21'

