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Compositional Data are Everywhere

Geology Sociology

Microbiome: Markey et al., Blood, 20’ Single cell transcriptomics
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Compositional Data

A vector X = (X1, . . . ,Xp) representing proportions of some whole is
subject to the constraint

X1 + · · ·+ Xp = 1

Predictive modeling

I Predictors x i = (xi,1, . . . , xi,p): compositional

I Outcome yi : continuous or binary

Scientific question:

I Define biomarker(s) using a small set of variables that predict
disease risk

Challenges:

I The unit-sum constraint makes it difficult to interpret the effect of
predictors on the response
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Log-Contrast Models

Additive log-ratio transform:

alr(X ) = (log
X1

Xp
, . . . , log

Xp−1

Xp
)

Log-contrast regression:

E[yi | x i ] = (θalr)Talr(x i )= βT log(x i ),

subject to βT1 = 0.

High-dimensional extensions: compositional Lasso, tree-guided
compositional Lasso

Limitation: alr regression requires a reference variable while variables
selected from constrained regression are hard to interpret

1Lin et al., Biometrika, 14’; Shi et al., AOAS, 16’
2Wang and Zhao, AOAS, 17’; Bien et al., Scientific Reports, 21’ 3 / 19
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E[yi | x i ] = (θalr)Talr(x i ) = βT log(x i ),

subject to βT1 = 0.

High-dimensional extensions: compositional Lasso1, tree-guided
compositional Lasso2

Limitation: alr coefficients need to be interpreted w.r.t. a reference
variable, while constrained regression suffers from prediction accuracy.
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Log-Ratio Regression

Pairwise log-ratios3

E[yi | x i ] =
∑

1≤j<k≤p

θplrj,k log
xi,j
xi,k

The log-contrast coefficient β = C Tθplr where for p = 4

C T =


1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1

 .

Limitation: this model is not identifiable due to co-linearity of predictors,
e.g.

log
X1

X2
, log

X1

X3
, log

X2

X3

3Bates and Tibshirani, Biometrics, 19’ 4 / 19
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Balance Regression

Balance is the log-ratio between two geometric means

B(X ; I+, I−) = log
g(XI+ )

g(XI−)
=

∑
j∈I+ logXj

|I+|
−
∑

j∈I− logXj

|I−|

Balance regression searches for the best subsets I+ and I−:

E[yi | x i ] = θ0 + θ1B(x i ; I+, I−)

selbal4 uses greedy search to find the best subsets by adding one variable
at a time from the best k-part balances for k ≥ 2.

selbal prioritizes sparse models, but exhaustive search is time consuming.

4Rivera-Pinto, mSystems, 18’ 5 / 19
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Balance Regression

CoDaCoRe5 uses continuous relaxation to find the best subsets. For a
vector of assignment weights w , let

w̃ =
2

1 + exp(−w)
− 1.

Let w̃+ = ReLU(w̃) and w̃− = ReLU(−w̃). The relaxed balance is

B̃(X ; w) =

∑
j w̃

+
j logXj∑
j w̃

+
j

−
∑

j w̃
−
j logXj∑
j w̃
−
j

Hard thresholding

Î+ = {j : w̃+
j > τ}, Î− = {j : w̃−j < −τ}

CoDaCoRe is efficient, but tends to select too many variables.

5Gordon-Rodriguez et al., Bioinformatics, 22’ 6 / 19



Balance Regression

CoDaCoRe5 uses continuous relaxation to find the best subsets. For a
vector of assignment weights w , let

w̃ =
2

1 + exp(−w)
− 1.

Let w̃+ = ReLU(w̃) and w̃− = ReLU(−w̃). The relaxed balance is

B̃(X ; w) =

∑
j w̃

+
j logXj∑
j w̃

+
j

−
∑

j w̃
−
j logXj∑
j w̃
−
j

Hard thresholding
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Our Framework: Supervised Log-Ratios
Input: (x i , yi ) for i = 1, . . . , n.

Output: two subsets I+, I− of variables for defining the balance.
7 / 19



Step 1: Screen

Let z i denote the clr-transformed version of x i , where

Z =

(
log

X1

g(X )
, . . . , log

Xp

g(X )

)T

Let z (j) denote the vector of observations from the j-th variable.
Variables are screened by thresholding their univariate effect on y :∣∣∣∣ (y − ȳ)T(z (j) − z̄ (j))

‖z (j) − z̄ (j)‖2

∣∣∣∣ > τ

The threshold τ is chosen by cross-validation.
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Step 3: Cluster

Let Cτ be the collection of indices containing selected variables.

The Aitchison variation on the reduced data matrix is defined as

Â(τ)j,k =
1

n

n∑
i=1

(log
xi,j
xi,k
− 1

n

n∑
i ′=1

log
xi ′,j
xi ′,k

)2, j , k ∈ Cτ .

The Aitchison similarity is

Ŝ(τ)j,k = max
j′,k′

{
Â(τ)j′,k′

}
− Â(τ)j,k , j , k ∈ Cτ .

Clustering returns two subsets of variables for defining the balance.

9 / 19



A Latent Variable Model

log
Xj

Xp
= α0,j + α1,jU + εj , j = {1, . . . , p}\{p} (1)

y = β0 + β1U + ε, (2)

where for c1, c2 > 0 the coefficients α1,j satisfy

α1,j = 0, j /∈ I+ ∪ I−,

α1,j = c1, j ∈ I+,

α1,j = −c2, j ∈ I−,
p∑

j=1

α1,j = 0.

Here p is an inactive variable that belongs to I0 = {1, . . . , p}\{I+ ∪ I−}.
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Connection with Balance

B(X ; I+, I−) = α̃0 + (c1 + c2)U + ε̃,

where

α̃0 =
1

|I+|
∑
j∈I+

α0,j −
1

|I−|
∑
j∈I−

α0,j , ε̃ =
1

|I+|
∑
j∈I+

εj −
1

|I−|
∑
j∈I−

εj .

The response y is also linear in B(X ; I+, I−)

y = β0 − α̃0
β1

c1 + c2
+

β1

c1 + c2
B(X ; I+, I−) + ε− β1

c1 + c2
ε̃.
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How It Works

Let Zj = log(Xj)− log g(X ) denote the clr-transformed data. Then

Zj − E[Zj ] = α1,jU +
1

p

p∑
k=1

(εj − εk)

⇒ univariate regression can distinguish active from inactive variables

Aitchison Variation

Var(log
Xj

Xk
) =


2σ2

ε j ∈ I+, k ∈ I+

(c1 + c2)2σ2
U + 2σ2

ε j ∈ I+, k ∈ I−

2σ2
ε j ∈ I−, k ∈ I−.

⇒ clustering can distinguish variables in I+ from those in I−
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Simulation with Continuous Response

n = 100, p = 30; I+ = {1, 2, 3, 4}, I− = {5}
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Simulation with Binary Response

n = 100, p = 30; I+ = {1, 2, 3, 4}, I− = {5}
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Classification of Crohn’s Disease

n = 975; p = 48 genera; y is binary with 662 cases

I Selbal is the most accurate and also the most time consuming.

I classo does well in AUC, but returns a non-sparse model.

I SLR with spectral clustering and CoDaCoRe are comparable.
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Classification of HIV Status

n = 155; p = 60 genera; y is binary with 128 cases

I SLR selects a sparser model than CoDaCoRe.

I selbal is the most time consuming.

I classo do not perform well. lrlasso is the most sparse.

16 / 19



Microbiome and sCD14 Inflammation

n = 151; p = 60 genera; y is continuous
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Summary

I Supervised log-ratio can efficiently predict health outcomes from
compositional data.

I SLR leads to interpretable biomarker selection.

I SLR can be extended to semi-supervised settings.

I SLR requires proper zero handling.

I Selection of more than one balance?
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