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ABSTRACT

Linear mixed models are widely used in ecological and biological applications, especially in genetic
studies. Reliable estimation of variance components is crucial for using linear mixed models.
However, standard methods, such as the restricted maximum likelihood (REML), are computationally
inefficient and may be unstable with small samples. Other commonly used methods, such as the
Haseman-Elston (HE) regression, may yield negative estimates of variances. Utilizing regularized
estimation strategies, we propose the restricted Haseman-Elston (REHE) regression and REHE with
resampling (reREHE) estimators, along with an inference framework for REHE, as fast and robust
alternatives that provide non-negative estimates with comparable accuracy to REML. The merits of
REHE are illustrated using real data and benchmark simulation studies.

Keywords Genome-wide association study · Heritability study · Linear mixed model · Restricted Haseman-Elston
regression · Variance component

1 Introduction

The linear mixed model is a convenient and powerful tool for analyzing correlated data, with a wide range of applications
in scientific research. It is especially useful for genetic studies of complex traits, including heritability estimation
[29], genome-wide association studies (GWAS) [1], and network-based pathway enrichment analysis (NetGSA) [28].
Variance components estimation is an essential step when applying linear mixed models and the restricted maximum
likelihood (REML) approach is the gold-standard for this task [23]. REML works by iteratively maximizing the residual
likelihood with respect to the variance component parameters. During each iteration, REML computes the inverse
of two n × n matrices, where n is the sample size of the data set. As a result, the computation for REML quickly
becomes prohibitive for large sample sizes, especially when the correlations among observations are non-sparse – such
as between-subject correlations from genetic relationships [16]. Despite efforts such as average information REML
[8], Monte Carlo REML [21], and REML based on grid search [15] to improve its computational efficiency, REML
is still not scalable to large data sets in many applications, particularly in genetic studies. This impedes the ability to
estimate heritability for the HSHC/SOL data set since it has over ten thousand individuals and genetic correlations are
mostly non-zero among individuals. On the other hand, consistency and asymptotic normality of REML estimates are

∗correspondence author

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429643doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429643
http://creativecommons.org/licenses/by-nc-nd/4.0/


REHE: Fast Variance Components Estimation for Linear Mixed Models A PREPRINT

large sample properties. As will be illustrated with simulation studies in Section 4 and in Supplementary Note 2.3,
REML may be numerically unstable or may provide unreliable estimates. Given these shortcomings, fast and reliable
estimators for linear mixed model variance components are desired.

When computational efficiency is a primary concern, moment estimators have been used frequently as alternatives
to REML. These include analysis of variance (ANOVA), minimum norm quadratic unbiased estimation (MINQUE),
and the Haseman-Elston (HE) regression estimator [26, 25, 14, 29]. These methods bypass the most time-consuming
step in REML — the inversion of n × n matrices. Their key idea is to set up estimating equations by equating the
mean squared errors to its expectation, the error variance. ANOVA, originated from ideas by R. A. Fisher in 1920s, has
been well-established for estimating variance components. The resulting estimators are minimum variance quadratic
unbiased [12], and minimum variance unbiased under normality assumptions on the random effects and the errors
[11, 13]. MINQUE [25], which can be viewed as an extension of the ANOVA method, is equivalent to the first iteration
of REML [27]. It relaxes the assumption of normality using estimating equations that rely on initial values for the
variance components. The HE estimator, first introduced in [14], has been recently used for linear mixed model variance
component estimations in genetic studies [29, 33]. Its simple idea and fast computation make it favorable when working
with large and densely correlated data sets. A key limitation of these moment estimators is that they do not guarantee
non-negative estimates for the variance components. This leads to difficulties in interpretation and downstream analyses.

To address the shortcomings of existing approaches in linear mixed model variance component estimation, we propose
a new estimation method based on restricted Haseman-Elston (REHE) regression. REHE is computationally efficient,
and ensures non-negative estimates of variance components that are comparably accurate to REML estimates. To
accommodate the need for a strictly positive variance estimates in some applications, we also propose REHE with
resampling (reREHE), which provides a positive estimate with high probability. Furthermore, to facilitate inference, we
propose bootstrap confidence intervals for REHE estimates; our numerical experiments show that these confidence
intervals are more robust than their REML counterparts. Finally, to further speed up the computation for inference,
we also take advantage of correlation matrix sparsification [9] in the variance component estimation context. We
demonstrate the application of proposed methods in three different contexts: heritability estimation, GWAS and NetGSA.
We benchmark the proposed methods’ performance with simulation studies, and illustrate their advantages with data
from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) [30, 4] and The Cancer Genome Atlas
(TCGA) breast cancer data set [31].

The rest of the paper is organized as follows. In Section 2, we introduce the REHE estimator, discuss its properties and
propose a bootstrap inference framework. We also introduce the reREHE estimator as an alternative for the REHE
estimator. We demonstrate the performance of the REHE and reREHE estimators with real data applications in Section
3. In Section 4, we benchmark their performance with extensive simulation studies. Section 5 concludes the paper with
discussions on the results and potential improvements. Additional results on REHE, reREHE and matrix sparsification
are in the Supplementary Materials.

2 Methods

Consider a generic linear mixed model for an outcome vector Y of length n:

Y = Xβ +
K∑
k=1

σkγk + σ0ε. (1)

Here, X is an n × p design matrix for p covariates, and β is a p-dimensional fixed effect coefficient vector. For
k = 1, 2, . . . ,K, γk is a length n vector of random effects following Nn(0, Dk), where each n × n matrix Dk

defines one source of relatedness among observations, and is assumed to be known. The noise ε is a length n vector
following Nn(0, σ2

0In). The parameters σk’s (k = 0, 1, . . . ,K) are the variance components. For k = 1, . . . ,K,
hk = σ2

k/
∑K
l=0 σ

2
l estimates the proportion of variation explained by Dk. In the context of genetic studies, D1 is often

the kinship matrix and h1 is referred to as heritability.

Our main objective is to estimate the variance components σ2
k (k = 0, 1, . . . ,K). For expositional clarity, we assume

the model has no fixed effect, and the outcome vector Y is centered. We also assume K = 1 such that γ1 explains
all relatedness among observations. However, our methods can be easily extended to models with fixed effects
(Section 2.2.3), or with more than one random effects. Denoting D0 = In and γ0 = ε, model (1) becomes

Y = σ0γ0 + σ1γ1. (2)
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2.1 The Haseman-Elston Regression

The Haseman-Elston (HE) regression approach [14, 29, 33] estimates the variance components via the method of
moments. Specifically, since model (2) implies that Var(Y ) = σ2

0D0 + σ2
1D1, n2 estimating equations are constructed:

E[YiYj ] = σ2
0D

ij
0 + σ2

1D
ij
1 , i, j = 1, 2, . . . n,

where Dij
k denotes the (i, j) entry of matrix Dk (k = 0, 1). Estimation of the variance components can thus be recast

as a linear regression problem. Let Ỹ = vec
(
Y Y >

)
denote the vectorization of the n× n matrix Y Y > by stacking

its columns, X̃ = (vec(D0), vec(D1)) and σ2 = (σ2
0 , σ

2
1)>. We then have E

(
Ỹ
)

= X̃σ2. HE solves for variance
components σ2 by linear regression, specifically, by minimizing the residual sum of squares(

Ỹ − X̃σ2
)> (

Ỹ − X̃σ2
)
. (3)

The resulting estimator has a closed form expression σ̂2 = (X̃>X̃)−1X̃>Ỹ .

The computational complexity of HE is O(Kn2) compared to O(n3) for REML. When the sample size n is large and
the number of variance components K is small, as is typically the case in practice, HE offers substantial improvement in
computation over REML. However, the ordinary least squares solution for variance components by HE is not guaranteed
to be non-negative, leading to difficulties in downstream analyses and interpretation. In practice, negative estimates
from HE are often truncated at zero; yet such naive truncation does not minimize the residual sum of squares in (3)
within the parameter space (σ2

k ≥ 0, k = 0, 1). In addition, as will be illustrated in simulation studies in Section 4 and
the Supplementary Note 2.3, naive truncation-based HE estimates generally has larger mean square error than estimates
by REML and our proposed method, discussed next.

2.2 The Restricted Haseman-Elston Regression

To prevent negative estimation of variance components by HE, while preserving its computational efficiency, we propose
a new variance components estimation method, termed the restricted Haseman-Elston (REHE) regression. Similar
to HE, REHE is a moment estimator which regresses the empirical covariance of the observations on pre-specified
correlation matrices that encode sample relatedness. However, instead of the ordinary least squares estimate by HE,
REHE finds the non-negative minimizer of the residual sum of squares, ensuring sensible estimation of variance
components (Supplementary Figure S10). Following (3), the REHE estimates of the variance components are expressed
as:

(σ̃2
0 , σ̃

2
1) = arg min

(σ2
0≥0,σ2

1≥0)

n2∑
l=1

(
Ỹl − X̃l1σ

2
0 − X̃l2σ

2
1

)2
. (4)

There is a closed form solution to (4) with only two variance components (Supplementary Note 1.1). With more than
two variance components, iterative algorithms for non-negative least squares (NNLS) can easily solve (4) [18, 10, 17, 7].
The convexity of (4) guarantees the numerical solutions of different solvers converge to the same global minimizer.
Using the R package quadprog (v1.5-7, 2), REHE estimation has approximately the same computational cost as HE,
and is thus substantially faster than REML.

2.2.1 Consistency and Asymptotic Normality

The REHE estimator is consistent and asymptotically normal under mild conditions. For simplicity, we assume D1 is
sparse and block-diagonal,

D1 =


D

(1)
1 0 0 . . .

0 D
(2)
1 0 . . .

...
. . .

0 0 0 D
(M)
1

 ,

where D(m)
1 (m = 1, . . . ,M) are square blocks along the diagonal of D1, and M is the total number of blocks.

Such correlation structures are often approximately satisfied in genetic studies: for example, subjects are highly
genetically correlated within the same family, and are remotely correlated across families. Let sm denote the number of
rows/columns in D(m)

1 , and Y (m) denote the sm× 1 subvector of Y corresponding to the mth block. For example, Y (1)

is the subvector corresponding to the first s1 elements of Y . By construction, Y (m)’s are independent and normally
distributed with zero mean and covariance σ2

0Ism + σ2
1D

(m)
1 , for m = 1, . . . ,M .
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We proceed with first establishing consistency and asymptotic normality of the HE estimator. By (3), the HE estimate is
the ordinary least squares solution to a linear regression problem. For sparse block-diagonal D1, we simplify Ỹ and X̃
in (3) by discarding elements corresponding to zero entries of D1:

Ỹ =


Ỹ (1)

Ỹ (2)

...
Ỹ (M)

 , X̃ =


X̃(1)

X̃(2)

...
X̃(M)

 ,

where we denote Ỹ (m) = vec
(
Y (m)Y (m)>) and X̃(m) =

(
vec
(
I
(m)
n

)
, vec

(
D

(m)
1

))
, for m = 1, . . . ,M . The

independence of Y (m)’s implies independence of Ỹ (m)’s. Thus, the HE estimator falls within the framework of
generalized estimating equations with In as the working correlation matrix. The consistency and asymptotic normality
properties of such an estimator are well known (see 32, Example 2.1 and 5.1). Specifically, as the number of blocks
M −→ ∞, regardless of whether the maximum block size s = max

1≤m≤M
(sm) goes to infinity or not, it follows from

Example 2.1 in [32] that the HE estimates σ̂2
M =

(
σ̂2
0,M , σ̂

2
1,M

)
converge in probability to the true variance components

σ2 =
(
σ2
0 , σ

2
1

)
at a rate of

√
M or faster. Moreover, when the maximum block size s does not go to infinity too fast as

M −→∞, the HE estimates are asymptotically normal, with a rate of
√
M [32]:

W
−1/2
M HM (σ̂2

M − σ2)
d−→ N2(0, I2), (5)

where

WM =

M∑
m=1

(
X̃(m)

)>
R̄(m)X̃(m), R̄(m) = Cor

(
Ỹ (m)

)
, HM =

M∑
m=1

(
X̃(m)

)>
X̃(m).

In genetic studies, it is typical that subjects belong to small unrelated groups so that s is bounded, and the number
of groups M increases with increasing sample sizes. These settings satisfy the conditions for the HE estimator’s
consistency and asymptotic normality.

We are now ready to establish the asymptotic properties of the REHE estimator, σ̃2
M =

(
σ̃2
0,M , σ̃

2
1,M

)
. As implied by

(4), the REHE estimates are different from the HE estimates σ̂2
M only when HE yields negative estimates for some

variance components. Let P
(
σ̂2
0,M ≥ 0, σ̂2

1,M ≥ 0
)

denote the probability of the HE estimates being non-negative,
which equals P

(
σ̃2
M = σ̂2

M

)
. By (5), we have:

P
(
σ̃2
M = σ̂2

M

)
= P

(
σ̂2
0,M ≥ 0, σ̂2

1,M ≥ 0
) M−→∞−−−−−→ 1,

indicating asymptotic equivalence of the HE and REHE estimators. Note that despite their asymptotic equivalence, our
simulation results in Section 4 clearly show the advantages of REHE over HE in finite samples. Next, we show that
W
−1/2
M HM (σ̃2

M − σ̂2
M ) is op(1):

P
(
W
−1/2
M HM (σ̃2

M − σ̂2
M ) = 0

)
≥ P

(
σ̃2
M − σ̂2

M = 0
) M−→∞−−−−−→ 1.

We then have

W
−1/2
M HM (σ̃2

M − σ2) = W
−1/2
M HM (σ̃2

M − σ̂2
M ) +W

−1/2
M HM (σ̂2

M − σ2)

= op(1) +W
−1/2
M HM (σ̂2

M − σ2).

Therefore, we have established that the REHE estimator σ̃2
M satisfies:

W
−1/2
M HM (σ̃2

M − σ2)
d−→ N2(0, I2). (6)

2.2.2 REHE with resampling (reREHE)

Estimates obtained from REHE are non-negative. However, in some applications, a zero estimate for the variance
component may still make the interpretation and/or subsequent analyses challenging. To address this issue, we equip
REHE with a resampling procedure that provides strictly positive variance component estimates with high probability.
The resampling procedure utilizes repeated subsamples, which can further improve the computational efficiency of
REHE. The resulting approach is termed reREHE.
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Algorithm 1 reREHE Approach Estimation.
for b = 1 to B do

(a) Sample with replacement from Y to obtain a length [nrs] vector Y (b) with sampling rate rs, where [x] is a
function to round x to the nearest integer; subset the correlation matrices accordingly as D(b)

k , for k = 0, 1.

(b) Compute the variance component estimates
(
σ̃
2(b)
0,re, σ̃

2(b)
1,re

)
based on Y (b) and D(b)

k ’s using REHE (4).
end for
Estimate the variance components as σ̃2

k,re = 1
B

∑B
b=1 σ̃

2(b)
k,re, k = 0, 1.

The idea of subsampling for REHE is simple: instead of estimating the variance components based on all the observations
at the same time, we only use a small subsample of the data. The full-sample-based estimates and inference are usually
well approximated by statistics based on subsamples [24]. Similar subsampling techniques are also extensively used
in stochastic gradient descent methods [22]. Recently, subsampling has also been used with HE-based estimating
equations [33]. Our proposed reREHE procedure described in Algorithm 1 is unique in that it subsamples repeatedly to
obtain the estimates. Although at a cost of reduced computational efficiency compared to using a single subsample,
this resampling offers considerable advantages. By averaging the estimates from repeated subsamples, the reREHE
estimates have much higher accuracy compared to estimates based on a single subsample. At the same time, we obtain
strictly positive estimates, unless in extremely rare cases when all subsamples yield zero estimates. Other summaries,
such as median, can also be used to summarize estimates from repeated subsamples. When the sampling rate rs and the
number of subsamples B satisfy r2sB < 1, reREHE achieves higher computational efficiency than REHE. On the other
hand, choosing larger rs and B results in more stable results. In the simulation studies and data applications, we chose
B = 50 and varied rs within (0.05, 0.1) to achieve a balance between accuracy and computational efficiency.

2.2.3 REHE with Fixed Effects

The REHE estimation procedure can be easily modified to accommodate fixed effects. Consider the full model (1) where
X is the design matrix with p covariates and β is the fixed effect coefficient vector. Let P⊥X = In −X

(
X>X

)−1
X>

denote the projection matrix onto the orthogonal complement of the column space of X . We project the outcome Y and
the random effects γk’s (including the noise term γ0) as

Y † = P⊥XY, γ†k = P⊥Xγk.

Recall that each random effect γk follows a normal distribution with zero mean and covariance Dk. Writing D†k =

P⊥XDkP
⊥
X , model (1) becomes

Y † =
K∑
k=0

σkγ
†
k, γ†k ∼ Nn

(
0, D†k

)
, k = 0, . . . ,K. (7)

With model (7), we can directly apply the REHE approach as introduced in Section 2.2 to estimate the variance
components. When the sample size n is large, computing the projected correlation matrices D†k is time-consuming. In
genetic and genomics applications, the number of fixed effect covariates p is much smaller than the sample size n. We
also have balanced design in many of these applications. In those settings we are able to obtain good estimates of the
fixed effects, and we can directly use the original correlation matrices Dk instead of projected matrices D†k. In such
cases, as in our data applications and simulation studies, we expect results based on D†k to be very close to those based
on Dk. We thus suggest using Dk for computational efficiency when estimating model (7) via REHE or reREHE.

If the fixed effect coefficients β are of interest, they can be estimated using ordinary least squares as β̂ =(
X>X

)−1
X>Y , or weighted least squares as β̂ =

(
X>Σ̂−1X

)−1
X>Σ̂−1Y , where Σ̂ =

∑K
k=0 σ̂

2
kDk is based on

previously estimated variance components σ̂2
k’s. While the resulting β̂ is consistent for β, one can iteratively update

σ̂2
k’s and β̂ as in [29].

2.2.4 Constructing Confidence Intervals with REHE

To obtain confidence intervals for variance component estimates, we use a parametric bootstrap procedure as summarized
in Algorithm 2.
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Algorithm 2 Parametric Bootstrap Confidence Interval Construction for REHE.

Compute REHE estimates σ̃2
0 , σ̃

2
1 from (4), based on Ỹ , D0, D1;

for b = 1 to B do
(a) Generate outcome vector Ỹ ∗(b) from Nn

(
0, σ̃2

0D0 + σ̃2
1D1

)
;

(b) Compute REHE estimates σ̃2(b)
0 , σ̃

2(b)
1 from (4), based on Ỹ ∗(b), D0, D1;

end for

Using the bootstrap samples of REHE estimates,
(
σ̃
2(b)
k

)B
b=1

, for k = 0, 1, we can construct Wald-type confidence
intervals as [

σ̃2
k − zα/2 × SD

(
σ̃
2(b)
k

)
, σ̃2
k + zα/2 × SD

(
σ̃
2(b)
k

)]
, k = 0, 1,

where zα/2 is the (1 − α/2) × 100th percentile of the standard normal distribution, and SD(·) denotes the sample
standard deviation over bootstrap samples. Wald-type confidence intervals are valid, provided that the estimates are
normally distributed. We can also construct quantile bootstrap confidence intervals as[

σ̃2
k −

(
σ̃
2(b)
k − σ̃2

k

)
1−α

, σ̃2
k −

(
σ̃
2(b)
k − σ̃2

k

)
α

]
, k = 0, 1,

where
(
σ̃
2(b)
k − σ̃2

k

)
α

is the (1− α)× 100th empirical quantile of
(
σ̃
2(b)
k − σ̃2

k

)B
b=1

.

For small sample sizes, the quantile confidence intervals are expected to be more robust than their Wald-type counterparts.
When the REHE estimator is close to be normally distributed under large sample size, Wald-type confidence interval
might have higher accuracy based on the same number of bootstrap samples. In simulation studies and real data
applications, we chose the number of bootstrap samples B = 50 to balance between computational time and confidence
interval accuracy. Confidence intervals for functions of variance components, such as heritability, can be similarly
obtained by transforming the bootstrap samples accordingly.

When the correlation matrix D1 is dense and the sample size n is large, it is computationally prohibitive to compute a
matrix decomposition (through Cholesky or singular value decomposition) of D1, which is required for the sampling
step (a) in the Algorithm 2. To speed up the inference procedure in this case, we use correlation matrix sparsification
[9]. The sparsification approximates the dense correlation matrix D1 by a sparse block-diagonal matrix D∗1 , and thus
largely accelerates matrix decomposition. The application of matrix sparsification to variance component inference in
genetic studies is novel and is discussed in detail in Supplementary Note 1.2. Related simulation studies are shown in
Supplementary Note 2.1 and Note 2.3.

3 Applications

3.1 GWAS and Heritability Study with HCHS/SOL Data

To evaluate the performance of REHE and reREHE in genetics applications, we conducted a genome-wide association
analysis as well as a heritability analysis using a publicly available data set from the Hispanic Community Health
Study/Study of Latinos (HCHS/SOL) [30, 4]. Before preprocessing, the selected HCHS/SOL data set contained 12,803
subjects with 4,100,028 single nucleotide polymorphisms (SNPs).

In the genome-wide association analysis, we tested the association between each SNP and the red blood cell count
using a linear mixed model [4]. We first fit a null model, which was a linear mixed model without any genotype effect
[1]. We included fixed effects covariates age, gender, cigarette use, field center indicator, genetic subgroup indicator,
the first five principle components for population stratification effect, and individual sampling weights [4]. We removed
subjects that have missing values for the above covariates, and included 12,502 subjects in the analysis. Relatedness
among subjects was modelled by three random effects: genetic relatedness represented by kinship, membership of
household, and membership of community group [4].

We separately applied REHE, reREHE and REML to estimate the null model. For reREHE, we chose sampling rate
rs = 0.1 and used mean summary function based on 50 repeated subsamples. With n =12,502 subjects to be analyzed,
REHE only took 2.4 minutes to estimate the null model, a speed up of more than 10 folds compared to REML. reREHE
was similarly fast as REHE. Based on each estimated null model, we applied score tests for the association of each
SNP and the red blood cell count [4], and compared the resulting p-values. We focus here on genes with p-values no
larger than 5× 10−8 by at least one approach [5]. As shown in Figure 1a and 1b, results based on REHE and reREHE
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Figure 1: Results of genome-wide association testing analysis and heritability analysis with a HCHS/SOL data set.
Gene association score test p-values (− log10 scale) based on: a - REML against REHE estimated null models; b -
REML against reREHE estimated null models. Only genes with resulted p-values no larger than 5× 10−8 by at least
one approach were presented. c - Dots represent point estimates of proportion of variance attributed to noise, kinship
(heritability), community membership and household membership; bars represent corresponding confidence intervals.
Results by REHE and REML are displayed. Two types of REHE-based confidence intervals are presented: Wald-type
confidence intervals (REHE Wald), and quantile-type confidence intervals (REHE Quantile).

have negligible differences from those based on REML. This concordance among REML, reREHE and REHE is not
surprising as the estimated variance components are similar (Figure 1c).

For the heritability analysis, we used the same data set and fitted the same linear mixed null model as in the above
genome-wide association analysis. The model was estimated based on REML and REHE separately. We obtained point
estimates and confidence intervals for heritability (corresponding to the kinship correlation matrix), and proportions of
variance explained by household membership, community block membership, and noise. REHE took 18.2 minutes to
conduct the inference, compared to 23.9 minutes by REML. Heritability and variance proportions estimates, as well as
the confidence intervals obtained by the REHE approach are all very similar compared to those obtained by REML
(Figure 1c).

We used the R package GENESIS (v2.14.3, 3) for REML and conducting genome-wide association analysis. All
analyses were conducted on a computer with 2 × 6-core Intel Xeon CPU E5-2620 @ 2.00GHz 128GB RAM.

3.2 Network-based Pathway Enrichment Analysis with Breast Cancer Data

To further demonstrate that REHE and reREHE facilitate downstream analysis with fast variance component estimation,
we performed a network-based pathway enrichment analysis, with a breast cancer data set from The Cancer Genome
Atlas (TCGA) [31], preprocessed by [20]. The data set contains RNA-seq measurements for 2,598 genes from 100
genetic pathways, with 403 subjects from the ER positive subtype and 117 from the ER negative subtype.

Network-based pathway enrichment analysis tests for differential gene pathways associated with particular phenotypes
under different conditions [19]. It assumes a linear mixed model for the relationship between gene expressions and the
phenotype (see Supplementary Note 1.3 and 19 for details). Here, we compared the activities of 100 genetic pathways
between the two ER groups. The ER group-specific gene networks — more specifically, the adjacency and influence
matrices supplied to the linear mixed model — were estimated according to [19]. We estimated the variance components
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Figure 2: Results of network-based pathway enrichment analysis based on a breast cancer data set. p-values (− log10
scale) of t-tests for group difference of each gene pathway: a - compare REHE results against REML results; b -
compare reREHE results against REML results. Two out-of-range data points are omitted from the plots, which
correspond to: Glycosphingolipid biosynthesis - lacto and neolacto series pathway, with p-value 1.09 × 10−307

by REML, 5.67 × 10−276 by REHE, 3.74 × 10−304 by reREHE; and Caffeine metabolism pathway with p-value
3.97× 10−201 by REML, 2.60× 10−179 by REHE, and 2.13−198 by reREHE

using REML, REHE and reREHE. For reREHE, we chose the sampling rate rs = 0.1 for sampling the subjects, and
additionally sampled gene entries within each subject with sampling rate 0.5 (see Supplementary Note 1.3 for details).
The reREHE estimate was based on the mean of 50 repeated subsamples. After obtaining the variance components
estimates, we tested for differences in the activity of each of the 100 genetic pathways [28].

We observed substantial improvement in computational efficiency of reREHE and REHE compared to REML: reREHE-
and REHE-based analyses both took less than 2 minutes, whereas analysis with REML took over 1 hour. Comparing the
resulting p-values, REHE and reREHE produce slightly more conservative p-values than REML (Figure 2). Moreover,
REHE yields a zero estimate for the noise variance component, the reREHE estimate is 0.0120, while the REML
estimate is 0.266. The corresponding network variance estimates are also quite different: 0.273 by REML, 0.534 by
reREHE and 0.610 by REHE. This may be an evidence that the variation explained by the network is much larger than
the variation from noise in the true model. As illustrated in our additional simulation studies in Supplementary Note 2.4,
REML may yield unreliable estimates under similar settings. We should thus take extra caution when interpreting
REML-based estimates and test results in this application.

We conducted all analyses using the R package netgsa (v3.1.0, 19) on a computer with 2 × 6-core Intel Xeon X5650 @
2.67 GHz, 96GB RAM.

4 Simulation Studies

4.1 Simulation Settings

To benchmark the improvement of REHE and reREHE over HE and REML for variance components and heritability
estimation, we generated synthetic data based on the HCHS/SOL design [30, 4].

reREHE and HE approaches were implemented only for point estimation comparison. We truncated negative HE
estimates at zero. For reREHE, we used B = 50 repeated subsamples, and chose sampling rates rs = 0.05 (reREHE
0.05) and rs = 0.1 (reREHE 0.1). Point estimates were evaluated in terms of the root mean squared error (RMSE). We
constructed Wald-type (REHE-Wald) and quantile-type (REHE-quantile) confidence intervals at 95% level for REHE
estimates, and compared their performances with REML based confidence intervals in terms of coverage and interval
width.

We simulated data based on the linear mixed model (2). We used sample size n ∈ {3,000, 6,000, 9,000, 12,000}.
For each sample size, we set the true values of the variance components to be (σ2

0 , σ
2
1) ∈ {(0.1, 0.1), (0.04, 0.1),

(0.1, 0.04), (0.01, 0.1), (0.1, 0.01)}. These values were chosen based on previous simulation study settings [29] and
estimates from real data applications [6]. For each sample size n selected, we generate the correlation matrix D1 as
a random sub-matrix of the kinship correlation matrix from the HCHS/SOL data set. For example, for n =3,000,
we subsampled 3,000 out of 12,803 subjects without replacement, and used the corresponding (subsample) kinship
correlation matrix as D1. Under each scenario, we ran 200 replicates. Computation was performed on a computer with
2 × 6-core Intel Xeon CPU E5-2620 @ 2.00GHz 128GB RAM.
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Figure 3: Simulation results for REHE and reREHE compared to REML. a - CPU time in seconds (log10 scale): time is
presented separately for fitting the model using REML (REML), for only computing point estimates by REHE (REHE
est), for constructing confidence interval for variance components with REHE (REHE CI), for only computing point
estimates by reREHE with subsampling rate rs = 0.05 (reREHE 0.05) and reREHE with subsampling rate rs = 0.1
(reREHE 0.1). b - Root mean squared error (RMSE) for heritability estimation; simulation was based on true values
σ2
0 = 0.1, σ2

1 = 0.1, where σ2
0 is the variance for noise, and σ2

1 is the variance for the random effect. c - RMSE for σ2
1

estimation; simulation was based on true values σ2
0 = 0.01, σ2

1 = 0.1.

We also conducted additional simulation studies to compare the approaches under different correlation structures; details
of these experiments can be found in Supplementary Note 2.3.

4.2 Simulation Results

Simulation results clearly demonstrate the improvement in computational efficiency by REHE compared to REML.
For point estimation, REHE was over 50 times faster than REML (Figure 3a). At the same time, REHE does not
compromise estimation accuracy. Figure 3b and 3c show that REHE estimates of both the variance components and
heritability are very close to those obtained by REML. Another advantage of REHE is that it corrects negative variance
estimates from HE. To quantify this difference, We calculated the proportion of simulation replicates resulting in
negative HE estimates (before zero-thresholding). This proportion reaches 23% with n =3,000, (σ2

0 = 0.01, σ2
1 = 0.1),

but reduces to 1.5% at n =12,000. As pointed out before, REHE automatically corrects the issue of negative estimates
without hard-thresholding. Besides, REHE has lower RMSE for point estimates when HE estimates are likely being
negative (Figure 3c).

The simulation results confirm that reREHE can provide strictly positive estimates with high probability. By providing
a positive variance estimate where REHE gives a zero estimate (up to 23% of the simulation repetitions), reREHE
is helpful for interpretation and downstream analysis, especially under small sample sizes. As shown in Figure 3b,
reREHE based estimates have smaller RMSE than all other methods at sample size n =3,000. With larger samples, the
RMSE of reREHE is comparable to other methods under some settings (Figure 3b), but is much larger in other settings
(Figure 3c, Supplementary Note 2.1 and Note 2.3). Setting a higher subsampling rate (0.1 compared to 0.05) reduces
RMSE (Figure 3b and 3c), but comes at the cost of reduced computational efficiency — reduction in computation time
compared to REHE diminishes from 67% to 10% (Figure 3a).

Turning to inference of variance components and heritability, both REHE based quantile-type and Wald-type confidence
intervals provide reasonably good coverage with comparable interval width to REML confidence intervals (Figure 4).
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Figure 4: Simulation results for confidence interval performance in terms of coverage and width. σ2
0 is the variance for

noise, and σ2
1 is the variance for the random effect. a - Coverage for heritability confidence interval (CI); simulation

was based on true values σ2
0 = 0.1, σ2

1 = 0.1. Monte Carlo error of 0.03 is expected for 200 simulation replications. b -
Coverage for σ2

1 CI; simulation was based on true values σ2
0 = 0.01, σ2

1 = 0.1. Monte Carlo error of 0.03 is expected
for 200 simulation replicates. c - Line charts of median half width of heritability CI with increasing sample sizes;
simulation was based on true values σ2

0 = 0.1, σ2
1 = 0.1. d - Line charts of median half width of σ2

1 CI with increasing
sample sizes; simulation was based on true values σ2

0 = 0.01, σ2
1 = 0.1.

The empirical coverage is close to nominal level under most cases (Figure 4a and 4b), considering a Monte Carlo
error of 0.03 based on 200 simulation replicates. REHE quantile-type intervals generally have better coverage than
Wald-type intervals when the true variance components are very different (Figure 4b). In terms of confidence interval
width, quantile-type REHE confidence intervals are generally narrower than Wald-type, and both are comparable to
REML-based intervals (Figure 4c and 4d). Inference based on REHE is more time-consuming than REHE-based point
estimation; however, it still achieves 50% reduction of computation time compared to REML (Figure 3a).

Finally, in some simulation settings, we noticed that REML confidence intervals may suffer from under-coverage.
For instance, with n =3,000 samples, when one variance component is substantially smaller, the coverage of REML
confidence intervals drop below 87% (Figure 4b). In other settings, REML confidence intervals even have coverage
below 60%, and have little improvement with increasing sample size (Supplementary Note 2.3). Another concern
is the numerical stability of REML: REML fails to provide a confidence interval if the estimate of any variance
component becomes zero during the iterative updates. We noticed frequent occurrence of this issue when the true
variance components are unbalanced and the sample size is small. For n =3,000 and (σ2

0 , σ
2
1) = (0.1, 0.01), REML

is unable to provide a confidence interval in 17.5% of the replicates. This proportion increases to 30.5% in other
settings (Supplementary Note 2.3). We view these two issues as a warning sign for REML-based inference in real
applications, especially when the underlying variance components are very different and the sample size is small.
In contrast, REHE-based inference is robust across different settings with valid confidence intervals and acceptable
empirical coverage.

The above simulation results are supported by evidence from additional simulation studies in Supplementary Note 2.3.
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5 Discussion

We proposed REHE for fast estimation of variance components in linear mixed models. Through simulation studies and
data applications, we demonstrated its substantial gain in computational efficiency over REML, with little compromise
in point estimation accuracy. Compared to HE, REHE corrects the issue of negative estimates, and potentially has large
gains in estimation accuracy. Therefore, REHE can be superior compared to HE and a good alternative to REML for
point estimation of variance components in linear mixed models.

We also proposed reREHE based on the resampling technique to produce strictly positive variance component estimates
with high probability in practice. Strictly positive estimates are more interpretable and may be more appealing for
downstream analyses. Though reREHE estimates may have lower accuracy than REHE, the magnitude of the increase
in RMSE is small in our experiments. We have also seen in the real data application that based on a subsampling rate of
0.1 and 50 subsamples, reREHE-based downstream analysis results are close to REML-based results. With suitably
chosen subsampling rate and number of subsampling replicates, reREHE can achieve higher computational efficiency
than REHE.

As mentioned previously, one can also use the median of the subsample results as the reREHE estimate. We explored
this choice in the Supplementary Note 2.2 and Note 2.3. When the underlying variance components are very different,
median-based reREHE estimates generally have smaller RMSE; otherwise mean-based reREHE performs better.
However, median-based reREHE is more likely to yield zero estimates. A post hoc selection of the summary function
can be made after observing the distribution of the subsample estimates based on reREHE.

As illustrated in the genome-wide association and pathway enrichment analysis examples, in many applications, only
variance component estimates are needed for downstream analyses. The computation burden of REML-based estimation
prohibits these analyses on large data sets. Restricting analysis to subsets of data reduces reliability and may yield
contradictory conclusions. Given the fast and reliable estimates by REHE and reREHE in large data sets, we see great
potential for their application in areas that only require point estimation of variance components.

When confidence intervals are also of interest, REHE remains a competitive alternative to REML for its robustness
and numerical stability. As illustrated in our simulation studies, when the sample size is small and the true variance
components are unbalanced, REML based inference is likely to suffer from numerical instability and/or poor coverage.
REHE consistently provides valid inference across all settings. Therefore, when the true variance components are
expected to be very different and the sample size is not large, we recommend REHE over REML if inference on variance
components is needed, as REML-based inference results may be unreliable.

Constructing confidence intervals for variance components when sample size is large (e.g. n >10,000) is inherently
computationally challenging. REHE only offers marginal improvements in computational efficiency over REML
when it comes to inference. However, we can improve the computational efficiency for REHE confidence interval by
parallelizing the bootstrap procedure. An alternative acceleration approach is to use correlation matrix sparsification (9,
Supplementary Note 1.2). In the Supplementary Note 2.1 and Note 2.3, we explored the application of sparsification
for constructing confidence intervals. Our conclusion is that sparsification improves computational efficiency in large
sample settings (n >12,000); however, it may result in less robust confidence intervals for both REHE and REML. We
did not explore application of sparsification to linear mixed models with more than one random effect. We expect a
much larger sample size beyond which sparsification would show improvement in computational efficiency.

We did not explore confidence interval construction for reREHE estimates in this paper. Due to the repeated subsampling
procedure of reREHE, an analytical expression for the confidence intervals is not trivial. The parametric bootstrap
procedure for REHE confidence interval construction is readily extendable to reREHE, which we expect to have similar
performance as REHE confidence intervals. However, the computation burden will also be similar to those of REHE
confidence intervals. Future research should explore fast inference procedure for REHE and reREHE estimates.

6 Software

The proposed methods are implemented with codes written in the R language, which are available at https://github.
com/yuek9/REHE.

Supplement

Supplementary material contains additional information on REHE, reREHE and simulation studies. It is available
online at https://www.biorxiv.org/.
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