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Abstract

Existing software tools for topology-based pathway enrichment analysis are either computa-

tionally inefficient, have undesirable statistical power, or require expert knowledge to lever-

age the methods’ capabilities. To address these limitations, we have overhauled NetGSA,

an existing topology-based method, to provide a computationally-efficient user-friendly tool

that offers interactive visualization. Pathway enrichment analysis for thousands of genes

can be performed in minutes on a personal computer without sacrificing statistical power.

The new software also removes the need for expert knowledge by directly curating gene-

gene interaction information from multiple external databases. Lastly, by utilizing the capa-

bilities of Cytoscape, the new software also offers interactive and intuitive network

visualization.

Author summary

With the increase in publicly available pathway topology information, topology-based

pathway enrichment methods have become effective tools to analyze omics data. While

many different methods are available, none are uniformly best. This paper focused on

overhauling an existing topology-based method, NetGSA. The three key improvements

included dramatically reduced computation time so pathway enrichment can be per-

formed within minutes on a personal computer, integration of publicly available pathway

topology databases so users can easily leverage the entire capabilities of the NetGSA

method, and facilitating interactive visualization of results through an interface with

Cytoscape, a popular network visualization tool. The improved NetGSA was compared to

the previous version as well as other similar pathway topology-based methods and

achieves competitive statistical power. With these improvements and NetGSA’s flexibility

to address a diverse set of problems and data types, we believe that the new NetGSA can

be a useful tool for practitioners. The updated NetGSA is available on CRAN at https://

cran.r-project.org/web/packages/netgsa/index.html and the development version is avail-

able on GitHub at https://github.com/mikehellstern/netgsa.
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This is a PLOS Computational Biology Software paper.

Introduction

Pathway enrichment analysis methods have become standard tools for analyzing omics data

[1]. While earlier generations of methods are still widely used, the third generation, topology-

based methods, may offer advantages by incorporating the pathway structure [2]. Despite

these advantages, limitations in existing methods and software have hindered wide adoption

of topology-based methods [1]. To overcome these limitations, this paper provides important

updates to an existing statistically powerful method, NetGSA [3, 4], which was previously diffi-

cult to use and computationally expensive [5].

Many topology-based methods have been proposed in the literature, but there is no consis-

tent best choice for a given problem. For example, computationally efficient methods, such as

SPIA [6] and PRS [7] require differentially expressed genes which may or may not be detected.

Methods such as topologyGSA [8] and Pathway-Express [9] have specific input requirements

and thus may not be applicable to, e.g., metabolomics data [5]. The current version of NetGSA,

a statistically powerful method, is computationally slow. Finally, a major hurdle common to all

topology-based methods is their reliance on external information [1]. This information is

often spread across several databases, such as KEGG [10], Reactome [11], and PantherDB [12],

making aggregation challenging for non-expert users.

These issues present a clear need for computationally efficient, statistically powerful, and

user-friendly software. To address this need, we have completely overhauled the netgsa R

package, an implementation of the NetGSA methodology. In addition to desirable statistical

power, NetGSA has a number of appealing features. Most notably, it provides a flexible frame-

work for testing pathway enrichment in complex experiments [13] and diverse data types, and

is robust to errors or incompleteness of existing biological network databases [3]. However,

the implementation of the method in the netgsa package was overly complicated, requiring

users to manually extract and supply biological network information. The package was also

prohibitively slow for analyzing data with large numbers of omics measures. To address these

shortcomings, we have drastically simplified the netgsa workflow to three functions and

netgsa now connects seamlessly with several knowledge bases and interactive visualization

tools to vastly improve the user experience. netgsa’s computation has also been significantly

improved and pathway enrichment can now be performed in minutes on a personal laptop

with no loss in statistical power. Fig 1 gives an overview of the NetGSA methodology and

changes in the netgsa software.

Design and implementation

The updated version of netgsa includes important user interface improvements, streamlin-

ing the workflow from analysis to visualization. The package also continues to support diverse

omics data types, including gene expression, proteomics and metabolomics data sets. How-

ever, to simplify the presentation, we describe the netgsa’s features in the context of gene

expression data sets.

User interface: Input

The inputs to netgsa are gene interactions (optional), a list of pathways to test, and gene

expression data. Gene interaction information is an optional input as netgsa can directly

learn the network from expression data. However, this information is recommended for
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leveraging the full power of the NetGSA method. Previously, users had to manually supply this

information. This was a time consuming task as there are numerous fragmented databases

each using different identifiers. netgsa now interfaces directly with graphite [14] to

search for interaction information so users can easily access all of netgsa’s functionality.

Users can specify any of NDEx [15] or the eight pathway databases available in graphite—

KEGG [10], BioCarta [16], Reactome [11], NCI/Nature Pathway Interaction Database [17],

PathBank [18], PantherDB [12], smpdb [19], PharmGKB [20]—and netgsa will retrieve the

interaction information. This functionality is available with a single R function: obtain-
EdgeList().

The next step in the netgsa workflow is to estimate the weighted adjacency matrices for

each condition using the interaction network collected. The new prepareAdjMat() func-

tion now detects the network type (directed/undirected), compiles the interaction information

for users, and estimates the weighted adjacency matrix for each condition. With these

improvements, pathway enrichment can be performed with three simple functions as shown

in Fig 2. Alternatively, NetGSAq() can also be used to perform weighted adjacency matrix

estimation and pathway enrichment in a single function call.

User interface: Output

Pathway enrichment analysis typically consists of large biological networks which are difficult

to visualize. Static images are either too specific, offering only a local view, or too broad,

Fig 1. NetGSA methodology highlighting package updates. (A) NetGSA takes external gene interactions, a matrix of pathways to test, and

expression data as inputs. The new netgsa incorporates existing external databases such as KEGG, Reactome, NCI, etc. (B) Weighted adjacency

matrices are calculated for each condition (two conditions shown). Users now have the option to use clustering in calculating the weighted

adjacency matrices. (C) Pathway enrichment is performed using weighted adjacency matrices. In addition to REML, users can estimate the variance

parameters using REHE. Faster matrix calculations are also incorporated in C++ (B & C). (D) Visualization is now available with the option to use

either Cytoscape or igraph. (E) Power simulations involved steps (B) and (C).

https://doi.org/10.1371/journal.pcbi.1008979.g001
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yielding incomprehensible pictures. To remedy this, netgsa now connects directly with

Cytoscape [21], a Java-based interactive network visualization tool.

Cytoscape offers an intuitive and user-friendly interactive display. Users simply need to

have Cytoscape installed and running and use the plot() function in netgsa to generate

visualizations in Cytoscape. The default network plot displays pathways as nodes and between

pathway interactions as edges. Two pathways are connected if at least one gene from each

pathway are connected. By default, pathway nodes are colored according to both FDR adjusted

p-values and values of the test statistic returned by NetGSA(); all data are loaded into Cytos-

cape, so further customization is available for users familiar with the software. Additionally,

the subnetwork containing only statistically significant pathways is also plotted to reduce

visual complexity. The visualizations use Cytoscape’s nested network format, so users can eas-

ily zoom-in to see the pathway members and their interactions. See Fig 3 for an example visu-

alization produced by netgsa in Cytoscape based on breast cancer gene expression data

from The Cancer Genome Atlas [22]. When Cytoscape is not open or is unavailable, the net-

work is plotted using the igraph package in R.

Computational improvements

The new version of netgsa couples user interface improvements with computational

advances. Users can now choose the Restricted Haseman-Elston (REHE) method (set as

Fig 2. The new netgsa workflow in R.

https://doi.org/10.1371/journal.pcbi.1008979.g002

Fig 3. Example of a nested network Cytoscape plot for breast cancer data.

https://doi.org/10.1371/journal.pcbi.1008979.g003
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default) [23] to estimate the variance components of the latent variable model for inference.

Previously, the variance components were estimated by Restricted Maximum Likelihood

(REML) based on a Gaussian likelihood. This maximization procedure required computing

the gradient and Hessian of the profile log-likelihood, a computationally expensive procedure.

By using a constrained method of moments estimator, the REHE method is much more effi-

cient than REML. The increase in efficiency is particularly salient for large data sets. Addition-

ally, users can estimate the adjacency matrices via the cluster option (set as default) in

prepareAdjMat(), which is referred to as “clustering” in this paper.

To cluster genes, the 0–1 adjacency matrix from the gene interactions in e.g. obtain-
EdgeList() is used to identify connected components in the network. Next, six clustering

algorithms from the igraph package, specifically cluster_walktrap, cluster_lea-
ding_eigen, cluster_fast_greedy, cluster_label_prop, cluster_info-
map, and cluster_louvain, are run on each connected component >1,000 genes. In

order to ensure clustering reduces computational complexity, algorithms producing a maxi-

mum cluster size >1,000 genes are discarded and among the remaining, the algorithm with

the smallest edge loss is chosen. Weighted adjacency matrices are estimated for each cluster

and reassembled into a block diagonal matrix as the final estimate of the weighted adjacency

matrix for the entire network. By leveraging this block diagonal structure, clustering can

reduce the computational complexity of estimating the weighted adjacency matrix by orders of

magnitude; see Fig 4 for an illustration. The new version of netgsa also incorporates much

faster matrix calculations in C++ through the RcppEigen package.

Results

Power analysis

Reducing the network to a block diagonal structure through cluster detection and efficient esti-

mation of variance components dramatically reduces the computation time. However, these

Fig 4. Illustration of block diagonalization and clustering in calculating weighted adjacency matrix. (A) The network is broken into clusters. (B)

Weighted adjacency matrix estimation is performed on each cluster separately. (C) Cluster specific matrices are recombined into a single matrix.

https://doi.org/10.1371/journal.pcbi.1008979.g004
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improvements would be useless if they lead to diminished statistical power or inflated type-I

error.

To evaluate the statistical power of the new netgsa software, the datasets and dysregula-

tion frameworks in [5] were used to estimate statistical power with and without clustering.

There were a total of three datasets, two of which come from The Cancer Genome Atlas

(TCGA). The first involves an analysis of primary breast cancers. Gene expression data was

collected for 2784 genes on 520 samples, of which 403 were estrogen-receptor-positive (ER+)

and 117 were estrogen-receptor-negative (ER-) [22]. The pathways tested were 114 signaling

and metabolic pathways from KEGG [10]. The second comes from a prostate cancer study

which measured gene expression of 2952 genes for 264 case and 160 control subjects [24]. For

this data, 112 KEGG signaling and metabolic pathways were analyzed. The final dataset is

much smaller and measured metabolic profiles among 41 non-diabetic and 30 diabetic mice

for 100 selected metabolites [25].

To introduce artifical signal to estimate the statistical power, data for each gene or metabo-

lite was centered and scaled to have zero mean and unit variance. A subset of genes or metabo-

lites were chosen to be dysregulated based on three different dysregulation frameworks

detailed in [5]. If a gene was dysregulated, a mean signal was added for a chosen condition

(e.g. in the breast cancer data no signal was added to data from ER- subjects, but the mean sig-

nal was added to data from ER+ subjects). Three different mean signals were used: 0.2, 0.3, 0.4.

Pathways with at least one dysregulated gene were used to assess power and those with no dys-

regulated genes were used to evaluate type-I error. An FDR cut-off of α = 0.05 was used to

identify statistical significance. Due to computational considerations, REML power calcula-

tions were performed on each pathway separately, while REHE calculations were performed

on the entire network. As an additional comparison, REHE was also run on each pathway sep-

arately and achieves similar power to REML by pathway (S1 Appendix). However, this

approach may not offer significant reduction in computational time compared with REHE

with clustering. Therefore, we recommend using NetGSA with REHE and clustering options.

Each pathway was grouped based on its number of dysregulated genes: None, (0,5], (5,10],

>10. For example, the Galactose metabolism pathway tested in the breast cancer dataset had 4

dysregulated genes under the betweeness dysregulation framework [5]. Power estimates were

averaged over all pathways and datasets for each group and are displayed in Fig 5A along with

the standard errors. The “None” group shows a mean power of 0 suggesting that type-I error is

well controlled in all settings. For all other numbers of dysregulated genes, mean power is

higher using REHE with clustering compared to both REHE without clustering and REML.

Standard errors across the methods also appear to be comparable. Similar results were

obtained when analyzing power for each level of dysregulation and aggregating based on path-

way size rather than number of dysregulated genes, with power increasing as mean dysregula-

tion and pathway size increase respectively (S1 Appendix).

In addition to comparing against the old software, Fig 5B compares the recommended new

netgsa software, i.e., NetGSA with REHE and clustering (NetGSA.REHE.Cl), to existing

methods using a similar methodology to [5]. Specifically DEGraph [26], CAMERA [27], and

Pathway-Express without cut-offs [9] were considered. These methods were chosen as they are

not restricted in their input requirements. Over-representation analysis (ORA) type methods

were excluded from this analysis as they require a list of differentially expressed genes, assessed

using an FDR adjusted two sample t-test with unequal variances, which were almost never

detected for low dysregulation values (0.2, 0.3). A similar finding was reported in [5]. The

excluded ORA-type methods were Pathway-Express with cut-offs [9], PRS [7], SPIA [6], and

CePA ORA [28]. Three other methods, topologyGSA [8], PathNet [29], and CePa with gene

set analysis [28] were excluded for other reasons: topologyGSA requires the pathway topology
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to be a directed acyclic graph (DAG); PathNet has been shown to have uncontrolled type I

error [5]; and CePa with gene set analysis had very low statistical power (near 0) for all dysre-

gulation groups which is likely due to the low levels of mean dysregulation used in our simula-

tions. Due to time considerations, the selected methods were only compared using the breast

cancer dataset outlined above. Similar to [5], all methods control the type I error. DEGraph

performs well for pathways with fewer dysregulated genes, but relatively worse for pathways

with more dysregulated genes. Conversely, CAMERA and PE.noCut perform relatively better

for pathways with higher numbers of dysregulated genes, but relatively worse for pathways

with fewer dysregulated genes. The new netgsa software, NetGSA.REHE.Cl, performs favor-

ably in terms of power and is competitive with the top method across all dysregulated gene

groups.

Computational time

The power analyses performed in the previous section were run in parallel on a cluster with 4

nodes each with two 10-core CPUs and 128GB of memory. For the netgsa comparison,

netgsa was also timed using REML on the entire network to estimate the variance compo-

nents (NetGSA.REML.All). This is different than the power results presented in Fig 5 which

were estimated using REML for each pathway (NetGSA.REML). This difference is because cal-

culating power for REML on the entire network was too computationally expensive, so only 10

iterations for each dataset were timed. The mean and standard deviation of the combined run

time for network estimation (prepareAdjMat()) and pathway enrichment (NetGSA())

are shown in Table 1 for the breast cancer and prostate cancer datasets from [5]. Estimation

with REHE is several times faster than REML and clustering provides an additional large

improvement. Separate timing results for network estimation and pathway enrichment are

given in S1 Appendix.

Fig 5. (A) Power analysis for all datasets and all mean dysregulations, grouped by number of dysregulated genes in pathways; the “None” group

corresponds to null pathways. (B) Power comparison for all mean dysregulations for breast cancer data. The methods considered were CAMERA;

DEGraph; PE.noCut (Pathway-Express without cut-offs); NetGSA.REML (NetGSA with REML); NetGSA.REHE.Cl (NetGSA with REHE and

clustering); and NetGSA.REHE.nCl (NetGSA with REHE and no clustering).

https://doi.org/10.1371/journal.pcbi.1008979.g005
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The computational timing of netgsa is compared with other existing methods in Table 2.

While faster than the old netgsa, the new software is not as fast as the other methods tested,

reflecting a potential area for future improvement. It is worth noting that even though

netgsa is still relatively slow, it is now much closer in absolute time to the other methods

tested. A chief portion of netgsa’s computational time is driven by the estimation of the

weighted adjacency matrix. While inherently time consuming, this step offers robustness to

noise or incompleteness of externally-obtained network information. It also allows netgsa
to assess changes in both mean expression levels as well as network connectivities [3, 13].

Thus, the additional computational time offers appealing features not provided by other exist-

ing approaches. Furthermore, netgsa now comes with additional features from visualization

to user interface improvements. Finally, netgsa offers additional flexibility for multi-condi-

tion studies (e.g., more than 2 conditions), and can directly incorporate additional covariates.

Availability and future directions

The updated netgsa package offers important computational and user interface improve-

ments. It obtains external pathway information from a variety of databases automatically, solv-

ing the problem common to many pathway topology-based methods; it also offers intuitive

visualizations using the capabilities of Cytoscape. Furthermore, by using network clustering

and REHE for estimating the variance components, netgsa is no longer prohibitively slow.

Pathway enrichment analysis with * 2, 500 genes can be performed in minutes on a personal

laptop with no loss in statistical power or control of type-I error. With these improvements,

we believe netgsa can now be a useful tool for practitioners, especially when available net-

work information may be noisy or incomplete, or when performing more complex, multi-con-

dition pathway enrichment analysis. The updated NetGSA is available on CRAN at https://

cran.r-project.org/web/packages/netgsa/index.html and the development version is available

on GitHub at https://github.com/mikehellstern/netgsa.

Supporting information

S1 Appendix. Supporting tables and discussion.

(PDF)

Table 1. Timing results (in minutes) for NetGSA with REML and REHE with and without network clustering for

both the prostate and breast cancer datasets.

Method Mean SD

NetGSA.REML.All 167.83 30.69

NetGSA.REHE.nCl 33.35 14.12

NetGSA.REHE.Cl 4.60 1.18

https://doi.org/10.1371/journal.pcbi.1008979.t001

Table 2. Timing results (in minutes) comparing NetGSA with REML and REHE to select methods for breast can-

cer data.

Method Mean SD

CAMERA 0.0018 0.0002

DEGraph 0.0235 0.0007

PE.noCut 0.5162 0.0237

NetGSA.REHE.Cl 4.9464 1.1530

https://doi.org/10.1371/journal.pcbi.1008979.t002
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