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1.1 Introduction

High-throughput technologies have generated an enormous amount of tissue and cell-type
specific genetic, genomic and metagenomic data. Measurements of gene expression at the
single-cell level have also become possible and are promising data sources in studying brains,
cancer and immunology [19]. The CRISPR (clustered regularly interspaced short palin-
dromic repeats) screen has recently emerged as a powerful new approach in profiling gene
essentiality at the genome scale and in facilitating the dissection of regulatory networks by
gene editing [43]. These new data and technologies enable us to experimentally measure and
define biomolecular interactions on a large scale. This chapter focuses on graphical models
and network-based analysis in genetics, genomics and metagenomics, with an emphasis on
incorporating biomolecular networks in answering fundamental biological questions.

1.1.1 The human interactome

As introduced in [ chaper of Mukerjee and Bates], a biological network consists of a col-
lection of biomolecules and their interactions that correspond to various cellular functional
relationships, and is often represented as a graph with directed and/or undirected edges.
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Throughout the chapter, the word ‘interaction’ is used to denote the presence of an edge
between two nodes, which may be directed or undirected and defined experimentally or
statistically depending on the context. Examples of important biological networks include
gene regulatory networks, whose directed edges represent activation or repression relation-
ships between genes; protein-protein interaction networks, whose nodes are proteins linked
together by physical binding events; metabolic networks, whose nodes are metabolites and
edges reflect the chemical reactions of metabolism. Other useful networks are gene co-
expression networks [49], which are phenotypic networks in which genes are linked if they
share similar co-expression patterns.

Using complex network theory, [3, 4] found that the topologies of biomolecular networks
are far away from being random, but are in fact scale-free. In addition, these networks are
often comprised of physically or functionally connected subnetworks, also called pathways,
that work together to achieve certain biological functions. It is worth noting that both the
nodes and the interactions described above can be tissue- and context-specific. An important
goal of studying the human interactome is to elucidate the functional role of biological
networks under selected tissues and contexts, so as to understand the mechanisms of disease
onset and progression, and identify previously unknown genes and pathways associated with
complex phenotypes.

1.1.2 Publicly available databases

The past few years have seen systematic efforts in collecting and storing biomolecular in-
teractions, that are curated from literature and high-throughput experiments or estimated
using statistical methods, in publicly available databases. Some of these databases span a
wide range of data types, such as KEGG [25, 26, 27] that has structural information on
genes, proteins and pathways, while others contain specific data types, such as iRefIndex
[42] and STRING [45] that provide a critical assessment and integration of protein-protein
interactions. These well-maintained and regularly updated databases allow us to answer
important questions about the factors that control how signals pass through the biological
network in response to external stimuli. Efficient and rigorous incorporation of known bio-
logical information about pathways and networks into analysis of multiple genomic data is
a key component of integrative genomics.

However, an increasing body of evidence suggests that biomolecular interactions and
canonical pathways in existing databases are incomplete and largely inaccurate. Comple-
mentary to existing knowledge, one can also computationally construct biological networks
based on various types of molecular data and use the resulting networks/subnetworks in
downstream analysis. Learning biological networks by integrating both perturbation exper-
iments and observational data has been an active area of research. Interested readers are
referred to [ chapter of Mukerjee and Bates] for an overview of available methods. On the
other hand, the validity of biological networks inferred from data-driven approaches may
largely depend on the size of the study cohort which is often small compared to the number
of genetic features, the quality of the data, and the tissue or context under which the data
are collected. One expects that combining existing network information with data-driven
approaches may facilitate better understanding of fundamental biological processes.

1.1.3 Genetic terminologies

Table 1.1 lists the key genetic terminologies and their definitions used throughout this
chapter. More details about their biological contexts are available in [2] and [35].



Graphical Models in Genetics, Genomics and Metagenomics 3

TABLE 1.1
Definitions and abbreviations of genetic terminologies used in the paper.

SNP single nucleotide polymorphism; DNA sequence variation occurring
in which a single nucleotide differs among individual subjects

eQTL expression quantitative trait loci; statistical associations between
a SNP value and the expression level of a mRNA

Haplotype alleles across different loci on the same chromosome
GWAS genome-wide association study; statistical association between

a SNP value and a trait (e.g. response to therapy) or disease
LD linkage disequilibrium; non-random association of alleles

(e.g. SNP values) at different genomic locations
Pathway functionally related set of biomolecules (genes, proteins, metabolites)
Pleiotropy one gene that influences two or more unrelated phenotypes
Polymorphism genetic variations between individual subjects
PPI protein-protein interactions

1.2 Network-based analysis in genetics

Human genetic research aims to identify the genetic variants that are associated with various
complex phenotypes. A genetic variant may refer to (1) a single-nucleotide polymorphism
(SNP), which is a common variant that occurs in at least 1% of a population, (2) a mutation,
in a case where it is a rare variant, or (3) a copy-number variation/aberration (a CNV
is change in copy number in germline cells, whereas a CNA is change in copy number
arisen in somatic tissues). Graphical model and network-based methods play an important
role in identifying biologically relevant variants by taking into considerations gene-gene
interactions.

1.2.1 Network-assisted analysis in genome-wide association studies

Genome-wise association studies (GWAS) attemp to identify commonly occurring genetic
variants that contribute to disease risk, and so far have identified thousands of SNPs that
are associated with many human traits [5]. In its simpliest form, GWAS analysis is for-
mulated as a sequence of logistic regressions where the disease status from all individuals
serve as the response and each genotyped SNP is the covariate. The resulting p-value for
each SNP is then corrected for multiple comparisons using e.g. the Bonferroni adjustment.
Although this standard approach has the power of identifying common SNPs with strong
effects on phenotypes, it ignores the possible synergistic effects of genetic variants on dis-
ease phenotypes. Therefore network-assisted methods have been proposed to prioritize the
GWAS results and to identify subnetwork of genes that are associated with phenotypes.
The rationale of such network-based methods is that topologically related genetic variants
are more likely to produce similar phenotypic effects.

Among the available databases, the protein-protein interaction (PPI) networks from
STRING [45], iRefIndex [42] and Reactome [10] are often used in network-assisted analysis
(NAA). In addition, directed graphs such as the protein-DNA regulatory networks [28] have
also been used to identify potential causal variants [30]. NAA starts with preprocessing the
GWAS data to compute SNP- or gene-based statistical values such as p-values that measure
the significance of associations between the tested SNPs and the phenotype. After overlay-
ing these SNP- or gene-based p-values onto the network extracted from public databases,
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NAA approaches search for subnetworks and assess the combined effects of multiple genes
participating in the subnetworks through a gene set analysis. Depending on the null hypoth-
esis tested, one may apply permutation tests that randomly swap case and control labels in
the GWAS data or randomization tests that use randomly generated networks to estimate
the null distribution, thereby evaluating the significance of the detected subnetworks [24].
Network information has also been explored for identification of the causal variant within
a longer haplotype that is associated with the trait and for identification of causal variants
among multiple genes within a pathway [30].

Motivated by network-based analysis of gene expression data in [47, 48], [9] and [32] pro-
posed methods that incorporate the biological pathway information via a hidden Markov
random field (HMRF) model for GWAS. These types of HMRF models have been fur-
ther developed and applied to network-based analysis of rare variants (see Section 1.2.2).
An important and closely related problem to GWAS is expression quantitative trait locus
(eQTL) mapping where the phenotype of interest is gene expression (see detailed discussion
in Section 1.3).

1.2.2 Co-expression network-based association analysis of rare variants

Advances in next-generation sequencing technologies have revolutionized biomedical re-
search, including the ability to obtain the exome or whole genome sequencing of a large set
of samples. The large number of single nucleotide variants (SNVs) uncovered in each single
human genome or exome provide insights into the role of rare genetic variants in the risk of
complex diseases, but also create computational challenges for genetic studies. Compared
to a SNP which is a common variant, a SNV means a variation in a single nucleotide with-
out any limitations of frequency. Analysis of rare variants from exome or whole genome
sequencing has been a very active area of human genetic research. Given the very low minor
allele frequencies of such rare variants, grouping the variants based on gene annotation or
pathway information is the standard way of testing rare variant associations. However, such
approaches have seen limited success because many rare variants are neutral and have no
functional relevance.

Combining gene co-expression network with information on rare genetic variants, [34]
developed a novel algorithm, DAWN, to model two types of data: rare variations from exome
sequencing and gene co-expression in tissues that are related to disease risk. The algorithm
is based on a HMRF model [32, 47, 48], whose graph structure is determined by gene co-
expression. Specifically, for rare variants, gene-based tests for gene-disease associations are
first applied to obtain the p-value for each gene [22]. To construct a more interpretable gene
co-expression network, two important screening steps are applied. Step 1 first identifies a
set of key genes, which are defined as those with relatively small p-values. In step 2, DAWN
trims the set of key genes by excluding those that are not substantially co-expressed with
any other measured genes. Further neighborhood selection is used to construct a sparse
gene co-expression network.

Let n represent the total number of genes in the final network and Ω the corresponding
n× n adjacency matrix. DAWN converts the gene-based p-values to normal Z-scores, Z =
(Z1, · · · , Zn), to obtain a measure of the evidence of disease association for each gene.
These Z-scores are assumed to have a Gaussian mixture distribution, where the mixture
membership of Zi is determined by the hidden state Ii indicating whether gene i is a risk
gene (Ii = 1) or not (Ii = 0). The mixture model for Zi can be formally expressed as

Zi ∼ P (Ii = 0)N(0, 1) + P (Ii = 1)N(µ, σ2),

where µ and σ2 correspond, respectively, to the mean and variance of Zi under the alter-
native (Ii = 1). An Ising model is used to model the conditional dependence structure of
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the hidden states (I1, . . . , In) with the probability mass

P (I = η) ∝ exp(bT η + cηT Ωη) for all η ∈ {0, 1}n.

Using an iterative algorithm, one can estimate the parameters (b, c, µ, σ2) and the posterior
probability for each gene P (Ii = 1 | Z), which can be used to select disease-associated
genes.

It is worth pointing out that although the two screening steps used in DAWN significantly
reduce the search space, they may also prematurely remove genes that are in fact risk genes
from downstream analysis. This limitation may be addressed with improving quality of the
sequencing data and larger study cohort.

1.3 Network-based eQTL and integrative genomic analysis

Expression quantitative trait locus (eQTL) refers to the genomic regions that carry one
or more sequence variants that affect the expression of a gene, typically measured by mi-
croarrays or high-throughput RNA sequencing. Such variation may suggest mechanisms
under which phenotypic differences arise. Thus eQTL analysis has emerged as a key tool
for elucidating the causal effects of regulatory variants on gene expressions and the clinical
traits, where tissue-specific gene expressions can serve as possible mediators of the genetic
variants.

If the eQTLs are located close to the genes they influence, they are called local eQTLs.
Local eQTLs can act in cis by directly affecting only the expression of the gene that is on
the same physical chromosome with it, as well as in trans, owing to changes in the function
of a mediator [2]. In contrast, distant eQTLs refer to those that are located further away
from the genes they influence and usually act in trans [37] (see Figure 1.1). As whole-genome
sequencing data from different tissues/cell types become more accessible, there is a growing
interest in integrative eQTL studies including joint analysis of eQTL mapping across multi-
ple tissues for improved power [14] and Bayesian methods that combine external functional
annotations with genetic association data for prioritizing causal variants in genome-wide
association studies [16, 29].

Network-guided methods have also proven useful for identification of regulatory key
driver genes associated with coronary heart disease [23], detection of trans acting eQTLs
by modeling local gene networks [41] and eQTL mapping with mixed graphical Markov
models [46]. Below we discuss in detail several novel approaches that incorporate network
information for detecting eQTLs, and integration of GWAS and eQTL analysis. In such
applications of causal inference in genetics, directed graphs provide an effective way of
modeling various causal relationships.

1.3.1 Detection of trans-acting genetic effects

Recent studies suggest that a substantial proportion of the heritability in human gene
expression cannot be explained by cis variants [20, 40], indicating the important contribution
from trans acting genetic variants. Compared to cis eQTLs, detection of trans acting genetic
effects remains a major challenge due to the relatively small effects of trans eQTLs and their
specificity to the particular tissues and contexts [2, 12]. The high-dimensional multivariate
nature of gene expression traits imposes a severe multiple testing burden, which further
complicates trans eQTL mapping.
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Cis	  eQTL	  

Trans	  eQTL	  

SNP	  

FIGURE 1.1
Schematic of eQTLs, and the two mechanisms cis and trans that a genetic variant can
regulate gene expressions [37]. The boxes (in blue and red) represent protein-coding genes
influenced by the SNPs, as indicated by the arrows. Local eQTLs that are located close to
the genes they regulate can act both in cis and in trans, whereas distant eQTLs located
further away from the genes they regulate usually act in trans.

To enhance the power for trans eQTL mapping, a simple but important principle is to
account for as many competing sources of variation as possible. Consider the rationale in
Figure 1.2. Here SNP A regulates gene A in cis. The directed edge between gene B and
gene C, when unaccounted for, may reduce the signal and hence the power for detecting
the trans association between SNP A and gene C. Gene B in Figure 1.2 is also called the
exogenous factor, which is defined as any gene that (i) has a causal effect on gene C, and
(ii) is independent of the genetic variant SNP A. By identifying and conditioning on all
exogenous genes B, one is hopeful to increase the power for mapping trans eQTLs. This
is also the main objective underlying GNet-LMM [41] which detects trans-acting genetic
variants by modeling local gene regulatory networks. To be more specific, for each SNP A
- gene C pair to be tested, GNet-LMM evaluates the following statistical dependencies to
detect the V structure gene A → gene C ← gene B (Figure 1.2):

dep(XA, XC), dep(XB , XC), ind(XA, XB),

dep(XA, XB | XC), dep(ZA, XA), ind(ZA, XB).
(1.1)

Here dep(·, ·) and ind(·, ·) denote, respectively, a statistical dependence and independence
criterion (see [41] for detailed definitions of these criteria). Given the gene expression data,
a standard correlation test is employed to assess the dependency between two genes. To
evaluate the dependency between a SNP Z and a gene X, [41] used a linear mixed effects
model of the form

X ∼ N(Zβ, σ2
gKg + σ2

nI).

Here Kg denotes the random effects covariance defined based on the genotype similarity
with σ2

g being the variance of the random effects, σ2
n is the variance of the noise and I the

identify matrix.
Running the testing procedure in (1.1) over all possible combinations of (SNP A, gene

A, gene B, gene C) is a daunting task. To reduce the search space, one possible solution is to
require the presence of cis or trans association between SNP A and gene A. Conditioning on
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FIGURE 1.2
Graphical model illustration of the GNet-LMM algorithm [41]. The principle to improve
power for detecting trans association between SNP A and gene C is to identify and condition
on all exogenous genes with incoming edges (gene B in green). Exogenous genes represents
either cofounding sources of variation or regulatory effects between genes, and are defined
by testing for V-structures gene A → gene C ← gene B (black box) that are linked to SNP
A via gene A.

the expressions of all identified exogenous genes B, an extended linear mixed effects model
can be applied to detect whether there is a trans association between SNP A and gene C
[41].

1.3.2 A causal mediation framework for integration of GWAS and eQTL
studies

Mapping eQTLs is also frequently used for unraveling the causal mechanism leading from
genotype to phenotype, a crucial step for developing effective treatments of diseases. The
increasing ability and power to map not only cis acting eQTLs but also trans acting eQTLs
has greatly facilitated investigations into putative causal intermediates between genotype
and the phenotype (node A, B in Figure 1.3). It has been recognized that gene expres-
sions, albeit associated with genetic variants, may not be causal for the phenotype as the
associations could be the result of responses to the phenotype (node E, F in Figure 1.3) or
side effects (node C, G in Figure 1.3). Thus novel statistical methods beyond association
analysis are needed to prioritize causal mediating genes.

When both gene expressions and genetic variants are measured on the same set of indi-
viduals with different phenotypes, [33] developed a sparse instrumental variable regression
approach in order to identify the phenotype-associated genes whose expressions are con-
trolled by genetic variants, where the genome-wide genetic variants served as instrumental
variables. PrediXcan [18] is a gene-based association method that estimates gene expres-
sions determined by an individual’s genetic profile and subsequently correlates imputed gene
expression with the phenotype under investigation to identify genes involved in the etiology
of the phenotype.

There has been a recent interest in integrating summary data from GWAS and eQTL
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gene associated 
with genotype 
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FIGURE 1.3
Distinguishing causal intermediate genes between genetic variation and phenotype (modified
based on [17]). Genes can mediate the effect of genetic variation (genotype) on phenotype
(nodes A and B), but gene expressions may also be affected by genetic variants irrespective
of the phenotype (nodes C and G) or as a consequence of the phenotype (nodes E and F).
A major challenge is to go beyond association analysis and identify mediating genes like
A and B, which are valuable intervention points for understanding the molecular chain of
causality.

studies in order to identify genes whose expression levels are associated with complex trait
because of pleiotropy. One advantage of such approaches is that the summary-level data
from GWAS and eQTL studies can come from two completely different sets of individuals,
thereby effectively increasing the sample size for association analysis. The rationale for such
an integrative analysis is articulated in [50] and is illustrated in Figure 1.4. If the phenotypic
difference is caused by a genetic variant mediated by gene expression or transcription, then
we should expect simultaneous association between phenotype, gene expression and the
genetic variant (see Figure 1.4 (a) and also [50]). Such a simultaneous association can be
due to causality with gene expression as mediator, pleiotropy where the same causal variant
is associated with both phenotype and gene expression, or due to linkage where the shared
association is because of linkage disequilibrium (LD) with two distinct causal variants, one
affecting gene expression and another affecting phenotype (see Figure 1.4 (b)).

A summary data-based mediation test was proposed in [50] to identify gene expressions
that are associated with complex traits. For each of the GWAS identified SNPs, [50] per-
formed a mediation test with each of the gene expressions that has at least one cis-eQTL at
a p-value < 5× 10−8. Specifically, let Z be a genetic variant (e.g. a SNP), X the expression
level of a gene and Y the trait. Using the mediation framework illustrated in Figure 1.5,
the two-step least squares estimate of the effect of X on Y is

b̂XY = b̂ZY /b̂ZX ,

where b̂ZY and b̂ZX are the least squares estimates of Y and X on Z, respectively. One can
interpret bXY as the effect size of X on Y free of confounding from non-genetic factors. In
addition, the variance of b̂XY can also be estimated from the GWAS and eQTL summary
statistics. One can thus use the test statistic b̂2XY /Var(b̂XY ) to test whether gene X is
significantly associated with the trait Y . To differentiate pleiotropy from the less interesting
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FIGURE 1.4
Association between gene expression and phenotype through shared genotypes (modified
based on [50]). (a) Simultaneous associations caused by shared causal variants; (b) three
possible causes of simultaneous association, causality, pleiotropy and linkage [21].

X

Z Y

FIGURE 1.5
A simple mediation framework to link genetic variant Z to the gene expression X and the
trait of interest Y .

case of linkage, [50] tested against the null hypothesis that there is a single causal variant,
or equivalently the absence of heterogeneity in the bXY values estimated for the SNPs in
the cis-eQTL region.

1.4 Network models in metagenomics

Metagenomics has emerged as a powerful tool for learning microbial communities by di-
rectly extracting genetic materials from environmental samples. Microorganisms such as
bacteria and archaea do not exist in isolation but form complex ecological interaction net-
works. These microorganisms are naturally assembled into interacting communities, and
these community structures are directly linked to microbial processes. Therefore, the iden-
tification of key players in a taxonomically complex sample and understanding these complex
interdependency are necessary to understand the ecology of a particular habitat.
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1.4.1 Covariance based on compositional data

One challenge in microbial network construction is that we cannot measure the true abun-
dances of the microbes. Instead, the current sequencing technologies such as 16S rRNA
sequencing or shotgun metagenomic sequencing only provides information on the relative
abundances of the microbial taxa. Such relative abundances are often given in terms of
proportions with a unit sum. In other words, the data are compositional. Another feature
of the compositional data is the presence of many zeros because many taxa are absent from
the sample or their abundances are below the detection level due to insufficient sequening
depths. Recent attempts in microbial network analysis focused on estimating the covari-
ance matrix of compositional data [15]. However, one caveat with learning directly from the
compositional data is that the unit sum constraint can lead to large spurious correlations,
as illustrated in Figure 6 of [31].

It is instructive to first examine the quantity that is estimable based on compositional
data. Let W = (W1, . . . ,Wp)T with Wj > 0 for all j be a vector of latent variables, called
the basis counts (e.g., true bacterial counts), that generate the observed compositional data
via the normalization

Xj =
Wj∑p
i=1Wi

, j = 1, . . . , p.

Estimating the covariance structure of W based on X has traditionally been considered
infeasible owing to the apparent lack of identifiability. Nonetheless, [6] showed that the
basis covariance matrix Ω0 is approximately identifiable as long as it belongs to a class of
large sparse covariance matrices, where Ω0 = (ω0

ij)p×p is defined by

ω0
ij = Cov(Yi, Yj), Yj = logWj .

To see this, recall one of the matrix specifications of compositional covariance structures
introduced by [1] is the variation matrix T0 = (τ0ij)p×p defined by

τ0ij = Var(log(Xi/Xj)) = Var(logWi − logWj) = ω0
ii + ω0

jj − 2ω0
ij ,

or in matrix form,
T0 = ω01

T + 1ωT
0 − 2Ω0, (1.2)

where ω0 = (ω0
11, . . . , ω

0
pp)T and 1 = (1, . . . , 1)T . One can see from the decomposition (1.2)

that Ω0 is unidentifiable, since ω01
T + 1ωT

0 and Ω0 are in general not orthogonal to each
other (with respect to the usual Euclidean inner product).

On the other hand, one can similarly define the centered log-ratio covariance matrix
Γ0 = (γ0ij)p×p by

γ0ij = Cov{log(Xi/g(X)), log(Xj/g(X))},

where g(x) = (
∏p

j=1 xj)
1/p is the geometric mean of a vector x = (x1, . . . , xp)T . Letting

γ0 = (γ011, . . . , γ
0
pp)T , [6] shows that

T0 = γ01
T + 1γT

0 − 2Γ0. (1.3)

Unlike (1.2), the following proposition shows that (1.3) is an orthogonal decomposition and
hence the components γ01

T + 1γT
0 and Γ0 are identifiable. In addition, by comparing the

decompositions (1.2) and (1.3), one can bound the difference between Ω0 and its identifiable
counterpart Γ0 as follows.

Proposition 1 The components γ01
T +1γT

0 and Γ0 in the decomposition (1.3) are orthogo-
nal to each other. Moreover, for the covariance parameters Ω0 and Γ0 in the decompositions
(1.2) and (1.3),

‖Ω0 − Γ0‖max ≤ 3p−1‖Ω0‖1.
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Proposition 1 implies that the covariance parameter Ω0 is approximately identifiable
as long as ‖Ω0‖1 = o(p). Consequently one can use Γ0 as a proxy for Ω0, which greatly
facilitates the development of new methodology and associated theory. [6] developed a
composition-adjusted thresholding (COAT) method under the assumption that the basis
covariance matrix is sparse, and showed that the resulting procedure can be viewed as
thresholding the sample centered log-ratio covariance matrix and hence is scalable for large
covariance matrices.

1.4.2 Microbial community dynamics

The microbial communities are highly dynamic, and are constantly responding to per-
turbations in the environment. Several large-scale time-series microbiome data have been
generated to gain insights into the dynamics of gut microbiome over time. The human mi-
crobiota time series study in [7] covers two individuals at four body sites over 396 time
points, including gut, tongue, left palm and right palm. [11] reported coupled longitudinal
datasets of human lifestyle and microbiota by tracking two healthy male volunteers and
their commensal microbial communities each day over the course of a year. These studies
not only show overall stability of the microbial communities, but also marked community
disturbance following changes in the environment. However, the small number of subjects
involved in the above two studies proves to be inadequate for valid inference of time-varying
microbial networks.

The most comprehensive study on the progression of the infant gut microbiota thus far
examined 58 preterm infants in a neonatal intensive care unit, with repeated measurements
taken every few days on all study subjects starting within the first days of life, and ending at
approximately one month of age [36]. This set of densely sampled microbiome data provides
the relative abundances of microbial taxa measured over time, revealing important infor-
mation on ecological dynamics. One approach towards inference of time-varying microbial
networks is based on multivariate functional data analysis. For each taxon, its abundance
trajectory can be treated as functional data. One can then apply techniques developed for
estimating the covariance structure of multivariate functional data [39] to reconstruct the
microbial network at each time point. However, the compositional nature of the data and
also the excessive zeros require appropriate modification to these existing methods.

See [13] for a brief review of dynamic network inference from metagenomic data.

1.5 Future directions and topics

As our knowledge of biological networks increases, incorporation of such networks in analysis
of biological data proves invaluable in genetic association studies, and to some degree in
analysis of genetical genomics or eQTL studies. Looking forward, single-cell measurements
and gene editing tools such as CRISPR-Cas will lead to detailed understanding of the
biological networks at the single-cell level. The data sets from such studies are large and
require new statistical and computational methods.

Metagenomics is an emerging field that holds a great promise in biomedical research.
Most of the published works are still at the level of establishing association between taxa
composition and microbial gene abundances with various covariates or disease states. A
major challenge is to go beyond association studies and elucidate causalities. Mathemati-
cal modeling of the human gut microbiome at a genome scale is a useful tool to decipher
microbe-microbe, diet-microbe and microbe-host interactions [38]. Graphical models, espe-
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FIGURE 1.6
Subset of a microbial cysteine/methionine metabolic network for one bacterial species. The
model is constructed based on the bacterial genome. Each box represents a reaction. The
numbers within the boxes are KEGG Enzyme Commission (EC) number and code for
specific enzymes present in each reaction. Gray boxes represent reactions that occur in this
bacteria, as predicted by its genome. Red boxes denote reactions that are not predicted
by the genome. Circles represent metabolites consumed and produced within the reaction
network. Arrows represent reaction pathways that do (green) or do not (red) occur in this
bacteria, as predicted by the model. Black dashed arrows indicate input or output from or
to other metabolic networks. This figure is reproduced from [44] under a Creative Commons
license. doi:10.1016/j.atg.2016.02.001.

cially causal graphical models, provide a natural and useful tool for elucidating such causal
pathways. Parallel to advances in sequencing technologies, publicly available database of
experimentally elucidated metabolic pathways from all domains of life, such as MetaCyc
[8], is becoming more and more complete. Currently, MetaCyc contains more than 2400
pathways from 2788 different organisms, including those involved in both primary and sec-
ondary metabolism, as well as associated metabolites, reactions, enzymes and genes. This
provides important resources for analysis of microbiome and metagenomic data. Figure 1.6
presents an example of such a metabolic network. How to incorporate the metabolic net-
works/pathways into analysis of metagenomic data is an important area for future research.
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