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A Theoretical Analysis and Proofs

We first introduce additional notation needed in the remainder. Define Ω̃0 = diag(Ω0) + Ω0,E∩Ê , where

E and Ê are the true and the estimated edge set, respectively. By definition, Ω̃0 and Ω0 will be different at

position (i, i′) only when the edge (i, i′) is falsely rejected. In the following, we first derive an upper bound

for the size of Ê and ‖Ω̃0 −Ω0‖F . For the ease of presentation, we drop the superscript i for sets J0 and J1

in the ith regression, but they should be understood as J i0 and J i1, respectively.

The following lemma is needed in the proof of Theorem 1 below.

Lemma 1. For i = 1, . . . , p, denote by ξi = Zi−
∑

i′ 6=i θ
i
i′Zi′ , where θi is the optimal prediction coefficient

vector in the ith regression. Consider the event

Fi :=

{
Z :

1

m
‖ZT−iξi‖∞ ≤

c1

2

√
log(p− rp)
mω0,ii

}

with a constant c1 > 4, where ω0,ii is the ith diagonal element of the true inverse covariance matrix Ω0.

Define the event F =
⋂p
i=1Fi. Then P(F) ≥ 1− 2p2−c21/8.

The proof of Lemma 1 will be provided shortly. Denote by Λmax the maximal eigenvalue of ZTZ/m.

Conditioning on the event F , we have the following results on controlling the size of Ê and the Frobenius

norm of the deviance, ‖Ω̃0 − Ω0‖F .
∗To whom correspondence should be addressed: jinma@upenn.edu.
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Theorem 1. Suppose the conditions in Theorem 2.2 are satisfied. Then on eventF , for appropriately chosen

λ, we have

|Ê| ≤ 64Λmax

κ2(s)
(1− r)S0 + rS0, (A.1)

and

‖Ω̃0 − Ω0‖F ≤ c3

√
S0 log(p− rp)

m
≤ k1φ1, (A.2)

where c3 = 16c1

√
(1− r)/κ2(2s).

Remark 1. The result indicates that the cardinality of the estimated edge set is upper bounded by a function

of r, the percentage of the external information. The bound for |Ê| also depends on the restricted eigenvalue

κ(s), which is necessarily positive by the assumption that κ(2s) > 0. Two extreme cases occur when

(i) r = 0, i.e. we do not observe anyexternal information, thus reducing problem (2.4) to the original

neighborhood selection in [8]; (ii) r = 1, i.e. the exact network topology is known and hence Ê = E.

On the other hand, the upper bound for ‖Ω̃0 − Ω0‖F decreases as r increases, i.e. when more external

information becomes available. However, since the coefficients also need to be estimated, this deviance

always stays positive, even when r = 1.

Proof of Theorem 1. Recall J̃ = V \{J1 ∪ J0 ∪ {i}} is the set of indices for which there is no information

available. Denote by PJ1 = ZJ1(ZTJ1ZJ1)−1ZTJ1 the projection onto the column space of ZJ1 . It is easy to

see that the problem (2.4) is equivalent to solving

min
θJ̃

1

m
‖(Ip −PJ1)Zi − ZJ̃θJ̃‖

2
2 + 2λ‖θJ̃‖1. (A.3)

To bound Ê and ‖Ω̃0 − Ω0‖F , it suffices to focus mainly on the set J̃ , as false positive and negative errors

will only occur on this set.

Denote by si1 and si, respectively, the number of known ones and the number of nonzero coordinates

after excluding the known ones in the ith regression, and s = max
i=1,...,p

(si1 + si). If Z satisfies the restricted

eigenvalue condition in Assumption 2 with κ(2s) > 0, then ZJ̃ satisfies the same assumption with κ(2si) ≥

κ(2s) > 0 for si ≤ s. Moreover, κ(si) ≥ κ(s) ≥ κ(2s) > 0. Let θ̂
i

J̃ be the lasso estimator in (A.3) with

λ = c1

√
log(p− rp)
mω0,ii

(A.4)

for c1 > 4. Conditioning on the event F , we can invoke Theorem 7.2 of [2] and obtain simultaneously for
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all i,

‖θ̂iJ̃‖0 ≤
64Λmax

κ2(si)
si, (A.5)

and

‖θ̂iJ̃ − θiJ̃‖2 ≤
16c1

ω0,iiκ2(2si)

√
si log(p− rp)

m
. (A.6)

Combining (A.5) with the number of known edges si1 as given in J i1, we get

|Ê| ≤
p∑
i=1

{‖θ̂iJ̃‖0 + |J i1|} ≤
64Λmax

κ2(s)

p∑
i=1

si +

p∑
i=1

si1.

The upper bound in (A.1) follows immediately, since by definition the number of known and unknown edges

are
∑p

i=1 s
i
1 = rS0 and

∑p
i=1 s

i = (1− r)S0, respectively.

To bound ‖Ω̃0−Ω0‖F , recall that for every i′ 6= i, ω0,ii′ = −θii′ω0,ii. Using the bound in (A.6), we have

‖Ω̃0 − Ω0‖2F =

p∑
i=1

∑
i′∈J(θi)∩J(θ̂i)c

(θii′ω0,ii)
2 =

p∑
i=1

ω2
0,ii

∑
i′∈J(θi)∩J(θ̂i)c

|θii′ − θ̂ii′ |2

≤
p∑
i=1

ω2
0,ii‖θiJ̃ − θ̂

i

J̃‖22 ≤
{

16c1

κ2(2s)

}2 (1− r)S0 log(p− rp)
m

.

The last inequality in (A.2) follows from condition (2.7) in Theorem 2.2.

Proof of Lemma 1. For every i, it is easy to verify that ξi is normally distributed with mean 0 and variance

1/ω0,iiIm. Define random variables Υii′ = (ω0,ii/m)1/2ZTi′ξ
i for i′ 6= i. Then, ZTi′Zi′/m = 1 implies

that Υii′ ∼ N (0, 1). Let λ be defined as in (A.4). Using an elementary bound on the tails of Gaussian

distributions,

P(Fc) ≤
p∑
i=1

∑
i′ 6=i

P
(
{|ZTi′ξi|/m > λ/2}

)
≤

p∑
i=1

∑
i′ 6=i

P
(
|Υii′ | > (mω0,ii)

1/2λ/2
)
≤

p∑
i=1

∑
i′ 6=i

2 exp
{
−mω0,iiλ

2/8
}

≤ 2p(p− 1) exp
{
−c2

1 log(p− rp)/8
}
≤ 2p2−c21/8.

Therefore, P(F) ≥ 1− 2p2−c21/8.

With Lemma 1 and Theorem 1, we are ready to prove our main result in Theorem 2.2. The following

proof is adapted from [12].
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Proof of Theorem 2.2. Consider Ω̂ defined in (2.5). It suffices to show that on the event F

‖Ω̂− Ω̃0‖F = O

(√
S0 log(p− rp)

m

)
,

since by triangle inequality and Theorem 1, we can conclude

‖Ω̂− Ω0‖F ≤ ‖Ω̂− Ω̃0‖F + ‖Ω̃0 − Ω0‖F ≤ O

(√
S0 log(p− rp)

m

)
.

Denote Σ̃0 = Ω̃−1
0 , which is positive definite since by Theorem 1,

φmin(Ω̃0) ≥ φmin(Ω0)− ‖Ω̃0 − Ω0‖2 ≥ φmin(Ω0)− ‖Ω̃0 − Ω0‖F ≥ φ1 − k1φ1 > 0. (A.7)

The first inequality in (A.7) comes from the fact that for any nonzero vector δ ∈ Rp, δT Ω̃0δ = δTΩ0δ +

δT (Ω̃0 − Ω0)δ ≥ φmin(Ω0)− φmax(Ω̃0 − Ω0).

Given Ω̃0 ∈ Sp+ ∩ S
p

Ê
, define a new convex set:

Um(Ω̃0) = {B− Ω̃0 | B ∈ Sp+ ∩ S
p

Ê
} ⊂ Sp

Ê
.

Let

Q(Ω) = trace(ΩΣ̂)− trace(Ω̃0Σ̂)− logdet Ω + logdet Ω̃0.

Since the estimate Ω̂ minimizes Q(Ω), ∆̂ = Ω̂− Ω̃0 minimizes G(∆) = Q(∆ + Ω̃0).

The main idea of this proof is as follows. For a sufficiently large M > 0, consider sets

T1 = {∆ ∈ Um(Ω̃0), ‖∆‖F = Mrm}, T2 = {∆ ∈ Um(Ω̃0), ‖∆‖F ≤Mrm},

where

rm =

√
S0 log(p− rp)

m
.

Note that T1 is non-empty. Indeed, consider Bε = εΩ̃0 for ε = Mrm/‖Ω̃0‖F . Then Bε = (1+ε)Ω̃0− Ω̃0 ∈

Um(Ω̃0), hence Bε ∈ T1. Denote by 0̄ the matrix of all zero entries. It is clear that G(∆) is convex, and

G(∆̂) ≤ G(0̄) = Q(Ω̃0) = 0. Thus if we can show that G(∆) > 0 for all ∆ ∈ T1, the minimizer ∆̂ must
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be inside T2 and hence ‖∆̂‖F ≤Mrm. To see this, note that the convexity of Q(Ω) implies that

inf
‖∆‖F =Mrm

Q(Ω̃0 + ∆) > Q(Ω̃0) = 0.

There exists therefore a local minimizer in the ball {Ω̃0 + ∆ : ‖∆‖F ≤Mrm}, or equivalently, for ∆̂ ∈ T2,

i.e. ‖∆̂‖F ≤Mrm.

In the remainder of the proof, we focus on

G(∆) = Q(∆ + Ω̃0) = trace(∆Σ̂)− logdet(∆ + Ω̃0) + logdet Ω̃0. (A.8)

Applying a Taylor expansion to logdet(Ω̃0 + ∆) in (A.8) gives

logdet(Ω̃0 + ∆)− logdet Ω̃0

=
d

dt
logdet(Ω̃0 + t∆)

∣∣
t=0

∆ +

∫ 1

0
(1− t) d

2

dt2
logdet(Ω̃0 + t∆)dt

= trace(∆Σ̃0)− vec(∆)T
{∫ 1

0
(1− t)(Ω̃0 + t∆)−1 ⊗ (Ω̃0 + t∆)−1dt

}
vec(∆), (A.9)

where vec(∆) denotes the vectorized ∆, and⊗ is the Kronecker product. For ∆ ∈ T1, let K1 be the integral

term in (A.9), and define

K2 = trace
{

∆(Σ̂− Σ0)
}
, K3 = trace

{
∆(Σ̃0 − Σ0)

}
.

We can then write

G(∆) = K1 + trace(∆Σ̂)− trace(∆Σ̃0) = K1 +K2 −K3.

Next, we bound each of the terms K1,K2 and K3 to find a lower bound for G(∆).

First consider K2. Since the diagonal elements of Σ̂ and Σ0 are the same after scaling,

|K2| ≤ |
∑
i 6=i′

(Σ̂ii′ − Σ0,ii′)∆ii′ |.

By Lemma A.3 of [1], there exists a positive constant c2 depending on φmax(Σ0) such that

max
i 6=i′
|Σ̂ii′ − Σ0,ii′ | ≤ c2

√
log(p− rp)

m
,
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with probability tending to 1. Let ∆+ = diag(∆) be the diagonal matrix with the same diagonal as ∆, and

write ∆− = ∆−∆+. Then, K2 is bounded by

|K2| ≤ c2

√
log(p− rp)

m
‖∆−‖1. (A.10)

For K3, we can use the upper bound for ‖Ω̃0 − Ω0‖F in (A.2), and the lower bound for φmin(Ω̃0) in (A.7),

to write,

|K3| ≤ ‖∆‖F ‖Σ̃0 − Σ0‖F ≤ ‖∆‖F
‖Ω̃0 − Ω0‖F

φmin(Ω̃0)φmin(Ω0)
(A.11)

≤ ‖∆‖F
c3{S0 log(p− rp)/m}1/2

(1− k1)φ2
1

. (A.12)

The second inequality in (A.11) comes from the rotation invariant property of Frobenius norm, i.e.

‖Σ̃0 − Σ0‖F = ‖Σ0(Ω0 − Ω̃0)Σ̃0‖F ≤ φmax(Σ0)‖Ω0 − Ω̃0‖Fφmax(Σ̃0).

Using (A.2), we can also obtain an upper bound for the maximum eigenvalue of Ω̃0:

φmax(Ω̃0) ≤ φmax(Ω0) + ‖Ω̃0 − Ω0‖2 ≤ φmax(Ω0) + ‖Ω̃0 − Ω0‖F ≤
1

φ2
+ k1φ1.

Since rm → 0, there exists a sufficiently large k2 > 0 such that for ∆ ∈ T1,

‖∆‖2 ≤ ‖∆‖F = Mrm <
1

φ2
k2.

Following [10, Page 502, proof of Theorem 1], a lower bound for K1 can be found as

K1 ≥ ‖∆‖2F /{2(φmax(Ω̃0) + ‖∆‖2)2}

≥ ‖∆‖2F /{2 (1/φ2 + k1φ1 + k2/φ2)2} =
φ2

2

2(1 + k1φ1φ2 + k2)2
‖∆‖2F . (A.13)

Combining (A.10), (A.12) and (A.13),

G(∆) ≥ φ2
2

2(1 + k1φ1φ2 + k2)2
‖∆‖2F − c2

√
log(p− rp)

m
‖∆−‖1

− c3

(1− k1)φ2
1

√
S0 log(p− rp)

m
‖∆‖F .
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For ∆ ∈ T1, applying Cauchy-Schwarz inequality yields

‖∆−‖1 ≤
√
|Ê| · ‖∆−‖F .

We thus have

G(∆) ≥ φ2
2

2(1 + k1φ1φ2 + k2)2
‖∆‖2F − c2

√
|Ê| log(p− rp)

m
‖∆−‖F

− c3

(1− k1)φ2
1

√
S0 log(p− rp)

m
‖∆‖F

≥ ‖∆‖2F

 φ2
2

2(1 + k1φ1φ2 + k2)2
− c2

M

√
|Ê|
S0
− c3

M(1− k1)φ2
1

 > 0,

for M sufficiently large.

Proof of Corollary 1. Under the assumptions in Theorem 2.2, we have

‖∆Ω0‖2 = ‖Ω̂− Ω0‖2 = OP

(√
S0 log(p− rp)

m

)
= oP(1).

The partial correlation matrix corresponding to Ω̂ can be written as

Â = Ip − D̂−1/2Ω̂D̂−1/2 = A0 + D
−1/2
0 Ω0D

−1/2
0 − (D̂)−1/2Ω̂D̂−1/2 = A0 + ∆A0 ,

where

∆A0 = D
−1/2
0 Ω0D

−1/2
0 − (D̂)−1/2Ω̂D̂−1/2

= D
−1/2
0 (Ω0 − Ω̂)D

−1/2
0 + D

−1/2
0 Ω̂

(
D
−1/2
0 − D̂−1/2

)
+
(
D
−1/2
0 − D̂−1/2

)
Ω̂D̂−1/2. (A.14)

Next we show that each of the summands on the right hand side of (A.14) has `2 norm oP(1) and conclude

thus ‖∆A0‖2 = oP(1).

By Assumption 1, the diagonal entries of Ω0 satisfy ω0,ii ≥ φmin(Ω0) ≥ φ1 for all i = 1, . . . , p. Thus,

‖D−1/2
0 ‖2 = maxi ω

−1/2
0,ii ≤ φ

−1/2
1 . It follows that

‖D−1/2
0 (Ω0 − Ω̂)D

−1/2
0 ‖2 ≤ ‖D−1/2

0 ‖22‖Ω0 − Ω̂‖2 = oP(1).
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For the remaining two terms, first notice that ‖D0−D̂‖2 ≤ ‖D0−D̂‖F ≤ ‖Ω0− Ω̂‖F = oP(1). Therefore,

‖D−1/2
0 − D̂−1/2‖2 = max

i=1,...,p
|ω−1/2

0,ii − ω̂
−1/2
ii | = max

i=1,...,p

∣∣∣∣∣ω
1/2
0,ii − ω̂

1/2
ii

ω
1/2
0,ii ω̂

1/2
ii

∣∣∣∣∣
= max

i=1,...,p

∣∣∣∣∣ ω0,ii − ω̂ii
ω

1/2
0,ii ω̂

1/2
ii (ω

1/2
0,ii + ω̂

1/2
ii )

∣∣∣∣∣ ≤ φ−1
1 (φ1 − oP(1))−1/2‖D0 − D̂‖2,

where the last inequality comes from that fact that

min
i
|ω̂ii| = min

i
|ω̂ii − ω0,ii + ω0,ii| ≥ min

i
|ω0,ii| −max

i
|ω̂ii − ω0,ii| ≥ φ1 − oP(1).

Hence, ‖D−1/2
0 − D̂−1/2‖2 = oP(1). Note further,

‖Ω̂‖2 = ‖Ω̂− Ω0 + Ω0‖2 ≤ ‖Ω0‖2 + ‖Ω̂− Ω0‖2 = ‖Ω0‖2 + oP(1)

is bounded above. It follows thus,

‖D−1/2
0 Ω̂

(
D
−1/2
0 − D̂−1/2

)
‖2 ≤ ‖D−1/2

0 ‖2‖Ω̂‖2‖D−1/2
0 − D̂−1/2‖2 = oP(1),

‖
(
D
−1/2
0 − D̂−1/2

)
Ω̂D̂−1/2‖2 ≤ ‖D−1/2

0 − D̂−1/2‖2‖Ω̂‖2‖D̂−1/2‖2 = oP(1).

This completes the proof.

The following proof of Theorem 3.1 adapts from that of Theorem 2.1 in [11].

Proof of Theorem 3.1. Consider the special case where the row vector b = 1T , i.e. the whole network is

tested as one pathway. The general case when b 6= 1T follows from a similar argument.

For the partial correlation A
(k)
0 (k = 1, 2) defined in Section 3.2, it holds that Λ(k)(Λ(k))T = (Ip −

A
(k)
0 )−1 =

∑∞
t=0(A

(k)
0 )t. Hence

Λ̂(k)(Λ̂(k))T =

∞∑
t=0

(Â(k))t =

∞∑
t=0

(A
(k)
0 )t +

∞∑
t=1

t∑
u=1

(
t

u

)
(A

(k)
0 )t−u(∆

A
(k)
0

)u

= Λ(k)(Λ(k))T + ∆Λ(k) .

For Â(k) defined under the assumptions in Theorem 2.2 and 3.1, we have ‖∆
A

(k)
0

‖2 = oP(1) by Corollary

1. Thus, ‖∆Λ(k)‖2 = oP(1).
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Using results from [11], the test statistic in (3.11) can be written as

TS =
b(Ȳ(2) − Ȳ(1))√

σ̂2
γ

[
b
{

1
n1

Λ̂(1)(Λ̂(1))T + 1
n2

Λ̂(2)(Λ̂(2))T
}
bT
]

+ σ̂2
ε

(
1
n1

+ 1
n2

)
bbT

,

where Ȳ(k) is the mean expression of genes in the experimental condition k. [11] show that TS is an

asymptotically most powerful unbiased test for (3.10) when the correct network information is provided.

Therefore, to establish the result in Theorem 3.1, it suffices to show that the denominator of TS is a consis-

tent estimator.

In the following, we first consider the log-likelihood lF (ϑ; Λ̂) based on the estimated networks Λ̂ =

(Λ̂(1), Λ̂(2)) and correct variance components ϑ = (σ2
γ , σ

2
ε). We then establish that the maximum likelihood

estimator ϑ̂Λ̂ →P ϑ as Λ̂(k)(Λ̂(k))T →P Λ(k)(Λ(k))T for both k. Hence the denominator of TS is consistent

and TS is an asymptotically most powerful unbiased test for (3.10).

Let Ŵ(k) = σ2
γΛ̂(k)(Λ̂(k))T + σ2

εIp for k = 1, 2. Up to a constant, the negative log-likelihood

lF (ϑ; Λ̂) =
n1

2n
l(ϑ; Λ̂(1)) +

n2

2n
l(ϑ; Λ̂(2))

with

l(ϑ; Λ̂(1)) = logdet(Ŵ(1)) +
1

n1

n1∑
j=1

RT
j (Ŵ(1))−1Rj ,

l(ϑ; Λ̂(2)) = logdet(Ŵ(2)) +
1

n2

n∑
j=1+n1

RT
j (Ŵ(2))−1Rj ,

where Rj = Y
(1)
j − Ȳ(1) (j = 1, . . . , n1) and Rj = Y

(2)
j − Ȳ(2) (j = 1 + n1, . . . , n). We treat l(ϑ; Λ̂(1))

first. In particular, we can approximate l(ϑ; Λ̂(1)) using its one-term Taylor expansion around W(1)

l(ϑ; Λ̂(1)) = l(ϑ; Λ(1)) + trace
{
∇W(1) l(ϑ; Λ(1))T∆W(1)

}
+ o(‖∆W(1)‖22),

where∇W(1) l(ϑ; Λ(1)) is the gradient of l(ϑ; Λ(1)) with respect to W(1) and

∇W(1) l(ϑ; Λ(1)) = (W(1))−1 − n−1
1

n1∑
j=1

(W(1))−1RjR
T
j (W(1))−1.
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Let Γ = ∆W(1)/‖∆W(1)‖2 and denote

g(ϑ) = trace
{
∇W(1) l(ϑ; Λ(1))TΓ

}
= trace

{
(W(1))−1Γ

}
− n−1

1

n1∑
j=1

RT
j (W(1))−1Γ(W(1))−1Rj .

then

l(ϑ; Λ̂(1)) = l(ϑ; Λ(1)) + g(ϑ)‖∆W(1)‖2 + o(‖∆W(1)‖22).

Using von Neumann’s trace inequality [9], we can bound the first term in g(ϑ) by

∣∣ trace
{

(W(1))−1Γ
}∣∣ ≤ p∑

i=1

ς[i]((W
(1))−1)ς[i](Γ)

≤ pς[1]

(
(σ2
γΛ(1)(Λ(1))T + σ2

εIp)
−1
)
ς[1](Γ)

= p
1

φmin(σ2
γΛ(1)(Λ(1))T + σ2

εIp)
ς[1](Γ),

where ς[i](A) denotes the ith largest singular value of A. By construction, ς[1](Γ) = 1 and φmin(σ2
γΛ(1)(Λ(1))T+

σ2
εIp) ≥ σ2

ε. Hence | trace{(W(1))−1Γ}| ≤ p/σ2
ε. On the other hand, with probability tending to 1,

n−1
1

n1∑
j=1

RT
j (W(1))−1Γ(W(1))−1Rj ≤ ‖(W(1))−1Γ(W(1))−1‖2n−1

1

n1∑
j=1

RT
j Rj

≤ ‖(W(1))−1‖22‖Γ‖2n−1
1

n1∑
j=1

RT
j Rj = σ−4

ε E(‖Rj‖22),

where the last step follows from the strong law of large numbers. This implies that g(ϑ) is bounded for

nontrivial σ2
ε. Note also ∆W(1) = Ŵ(1) −W(1) = σ2

γ{Λ̂(1)(Λ̂(1))T − Λ(1)(Λ(1))T } = σ2
γ∆Λ(k) . Hence

g(ϑ)‖∆W(1)‖2 = g(ϑ)σ2
γ‖∆Λ(k)‖2 = oP(1). Therefore l(ϑ; Λ̂(1)) = l(ϑ; Λ(1)) + oP(1), and similarly one

can show that l(ϑ; Λ̂(2)) = l(ϑ; Λ(2)) + oP(1). They together imply that

lF (ϑ; Λ̂) = lF (ϑ; Λ) + oP(1).

Now conditioning on the event {lF (ϑ; Λ̂) = lF (ϑ; Λ)}, the estimate of the variance components is

ϑ̂ = argminϑ lF (ϑ; Λ). Since lF (ϑ; Λ) is convex with respect to ϑ, M-estimation results in [6] imply that

P(ϑ̂ = ϑ) = 1 and hence ϑ̂ →P ϑ as Λ̂(k)(Λ̂(k))T →P Λ(k)(Λ(k))T for both k. It follows immediately that

the denominator of the test statistic TS is a consistent estimator as Λ̂(k)(Λ̂(k))T →P Λ(k)(Λ(k))T for both
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k. This concludes the proof.

B Efficient Estimation of Model Parameters

In this section, we present in details the strategy used to scale up the NetGSA algorithm for large scale

networks as well as necessary derivations.

As pointed out in Section 2.2.1 of the main text, inference in NetGSA requires estimation of the mean

parameters µ(1) and µ(2) and variance components σ2
γ and σ2

ε. After rearranging the data D to be a N × 1

vector Y, we can write the model using the matrix notation as

Y = Ψβ + Πγ + ε, (B.1)

where the design matrix

Π = bdiag(Λ(1), . . . ,Λ(1),Λ(2), . . . ,Λ(2)) ∈ RN×N ,

and

Ψ =



Λ(1)

...

Λ(1)

Λ(2)

...

Λ(2)


∈ RN×2p.

The variance of Y, i.e. W = σ2
εIN +σ2

γΠΠ′. The mean β can be estimated via the maximum likelihood as

β̂ = (Ψ′Ŵ−1Ψ)−1Ψ′Ŵ−1Y,

where Ŵ is defined using the estimated variances. The variances are often estimated via the maximum

likelihood or restricted maximum likelihood using the profile likelihood. Thus, one can use an iterative

algorithm to jointly estimate β and the variance components.

However, estimation of the variance components is computationally demanding for large networks. To

ensure stability, the earlier version of the NetGSA considered profiling out one of the variance compo-

nents and implemented an algorithm from [4], which uses a limited-memory modification of the Broyden–
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Fletcher–Goldfarb–Shanno quasi-Newton method to optimize the profile log-likelihood. However, the above

implementation has a few issues. The first issue is its high computational cost due to the inefficient eval-

uation of matrix inverses and determinants. Moreover, the algorithm from [4] requires finite values of the

objective function within the supplied box constraints, which is often not satisfied, even after the constraints

are adjusted to be within a small range of the optimal estimate. This is particularly the case when the under-

lying networks are large. To extend the applicability of the NetGSA, we consider using Newton’s method

for estimating the variance parameters based on the profile log-likelihood to improve the computational sta-

bility. In particular, we make the following two key improvements for implementation of Newton’s method.

First, it is clear that Var(Y
(k)
j ) = σ2

ε

{
Ip + τΛ(k)(Λ(k))T

}
= σ2

εΣ
(k), where τ = σ2

γ/σ
2
ε. Since the

profile log-likelihood as well as its gradient and Hessian matrix with respect to τ all depend on Σ(k) (k =

1, 2) and their inverses, we choose to invert from their Cholesky decompositions Σ(k) = UTU, where U

is an upper triangular matrix. The inversion of the triangular matrices results in significant speedup and the

inverses of the original matrices can then be computed as (Σ(k))−1 = (U−1)(U−1)T . In the meantime, we

also simplify the calculation of the determinant of Σ(k) since det(Σ(k)) = det(U)2, which is necessary for

evaluating the profile log-likelihood.

Second, the quality of the starting point as well as step sizes will both affect convergence of Newton’s

method. To select a good starting point, we use a method-of-moment-type estimate of the variance compo-

nents. Specifically, denote the residuals Rj = Y
(k)
j −Λ(k)µ̂(k) for j = 1, . . . , n, where µ̂(k) is the estimate

of µ(k). Assume that there is a single variance σ2
ε that applies to all εj (j = 1, . . . , n) and variances of γj

are different. The variance of Rj can be decomposed as (σ2
γ)j +σ2

ε. We then take the minimum of Var(Rj)

as the estimate of σ2
ε and average of the remaining variances as the estimate of σ2

γ . Their ratio is used as

the initial value for τ . The approximation runs very fast and does not add much computational cost to the

method. To find the appropriate step sizes, we use backtracking line search as described in [3, page 464].

With the above two modifications, Newton’s method can then be implemented to optimize the profile

log-likelihood and returns an estimate of τ . Estimates of σ̂2
γ and σ̂2

ε follow immediately. The implementation

of Newton’s method requires the gradient and the Hessian of the objective function, i.e., the profile log-

likelihood. Next we provide details on how to calculate these quantities from the profile log-likelihood

when profiling out σε, based on the general framework introduced in [7]. The derivation follows similarly

when profiling out σγ .

Let N = np be the total number of observations for all genes. Recall that for k = 1, 2, Σ(k) =

Ip + τΛ(k)(Λ(k))T with τ = σ2
γ/σ

2
ε. The residuals Rj = Y

(k)
j − Λ(k)µ̂(k) for j = 1, . . . , n, where µ̂(k)

is the estimate of µ(k). Given the observations Y1, . . . ,Yn (with the first n1 samples from condition 1 and
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the remaining n2 = n − n1 samples from condition 2), the nonconstant part of the “full” log-likelihood lF

is

lF (σε, τ | Y1, . . . ,Yn) =− 1

2

{
n1 logdet(σ2

εΣ
(1)) + n2 logdet(σ2

εΣ
(2))
}

− 1

2
σ−2
ε


n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj

 .

Similarly, the nonconstant part of the log-likelihood using the restricted maximum likelihood is

lR(σε, τ | Y1, . . . ,Yn) =lF (σε, τ | Y1, . . . ,Yn)

− 1

2
logdet

{
n1σ

−2
ε (Λ(1))T (Σ(1))−1Λ(1) + n2σ

−2
ε (Λ(2))T (Σ(2))−1Λ(2)

}
.

We first solve for σ2
ε as a function of τ . The maximum likelihood estimate of σ2

ε is

σ̂2
ε =

1

N


n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj

 , (B.2)

whereas its restricted maximum likelihood estimate is

σ̂2
ε =

1

N − 2p


n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj

 . (B.3)

Substituting σ2
ε with its corresponding estimate, we obtain the profile log-likelihood

pF (τ | Y1, . . . ,Yn) = −1

2
(n1 logdet Σ(1) + n2 logdet Σ(2))

− 1

2
N log


n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj

 , (B.4)

for maximum likelihood and

pR(τ | Y1, . . . ,Yn) = −1

2
(n1 logdet Σ(1) + n2 logdet Σ(2))

− 1

2
(N − 2p) log


n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj


− 1

2
logdet

{
n1(Λ(1))T (Σ(1))−1Λ(1) + n2(Λ(2))T (Σ(2))−1Λ(2)

}
, (B.5)
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for restricted maximum likelihood.

As Σ(k) (k = 1, 2) are the only terms that depend on τ , we first look at the derivatives of logdet Σ(k),

RT
j (Σ(k))−1Rj , and logdet(H) with respect to τ , where H = n1H

(1)+n2H
(2) and H(k) = (Λ(k))T (Σ(k))−1Λ(k)

for k = 1, 2. Let

B(k) = (Σ(k))−1dΣ(k)

dτ
(Σ(k))−1.

Then
d logdet(Σ(k))

dτ
= trace

{
(Σ(k))−1dΣ(k)

dτ

}
,

d2 logdet(Σ(k))

dτ2
= trace

{
−(B(k))T

dΣ(k)

dτ
+ (Σ(k))−1d

2Σ(k)

dτ2

}
,

dRT
j (Σ(k))−1Rj

dτ
= −RT

j B
(k)Rj ,

d2 RT
j (Σ(k))−1Rj

dτ2
= −RT

j

dB(k)

dτ
Rj ,

d logdet(H)

dτ
= − trace

H−1
∑
k=1,2

nk(Λ
(k))TB(k)Λ(k)

 ,

and

d2 logdet(H)

dτ2
=− trace

H−1
∑
k=1,2

nk(Λ
(k))TB(k)Λ(k) ×H−1

∑
k=1,2

nk(Λ
(k))TB(k)Λ(k)


− trace

H−1
∑
k=1,2

nk(Λ
(k))T

dB(k)

dτ
Λ(k)

 ,

where

dB(k)

dτ
= −(Σ(k))−1

{
2
dΣ(k)

dτ
(Σ(k))−1dΣ(k)

dτ
− d2Σ(k)

dτ2

}
(Σ(k))−1.

Given the covariance Σ(k) (k = 1, 2) defined in Section 3.1, we can further simplify the above derivatives

and obtain
d logdet Σ(k)

dτ
= trace

{
H(k)

}
,

d2 logdet Σ(k)

dτ2
= − trace

{
H(k)H(k)

}
,

dRT
j (Σ(k))−1Rj

dτ
= −RT

j (Σ(k))−1Λ(k)(Λ(k))T (Σ(k))−1Rj ,

d2 RT
j (Σ(k))−1Rj

dτ2
= 2RT

j (Σ(k))−1Λ(k)H(k)(Λ(k))T (Σ(k))−1Rj ,
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d logdet(H)

dτ
= − trace

H−1
∑
k=1,2

nkH
(k)H(k)

 ,

d2 logdet(H)

dτ2
= − trace

H−1
∑
k=1,2

nkH
(k)H(k)

+ 2 trace

H−1
∑
k=1,2

nkH
(k)H(k)H(k)

 .

With the above quantities, one can then calculate the gradient and Hessian of the profile log-likelihood

pR for restricted maximum likelihood and use Newton’s method to obtain an estimate of τ . Estimate of σ̂2
ε

is calculated from (B.3), and σ̂2
γ = τ̂ σ̂2

ε. Estimation with maximum likelihood follows similarly by applying

Newton’s method to pF and utilizing (B.2).

C Additional Simulation Results

To benchmark the performance of the proposed network estimation procedure as well as NetGSA, we first

revisit the two simulation experiments presented in Section 3 of the main paper and report the Type I error

(or the observed false discovery proportion) when the null hypothesis is true. In addition, we consider two

other simulation experiments and refer to them as the third and fourth settings, following the earlier two

settings in the main paper. The simulations in this section are also discussed when comparing the run time

of NetGSA with different variance estimation algorithms in Section 3 of the main paper.

C.1 Simulation Studies 1 and 2

C.1.1 Powers

We have shown the estimated powers in Tables 2 and 3 in the main paper for the two experiments based

on adjusted false discovery rate (FDR) cutoffs. For completeness, we present here the estimated powers in

Tables A1 and A2 when the FDR cutoff is q∗ = 0.05. Due to the use of different FDR cutoffs, one expects to

see higher powers for the columns corresponding to 0.2, 0.8, 0.2(m) and 0.8(m), and slightly lower powers

for E and GSA-c in Tables A1 and A2 compared to, respectively, Tables 2 and 3 in the main paper. In

both Table A1 and Table A2, we still observe the following: NetGSA with the exact networks does a very

good job in recovering the true powers for each pathway; NetGSA with more external structural information

generally reports powers that are closer to the true power; further NetGSA is robust to misspecification in

external structural information. Further, for pathway 1 that has neither mean nor structural changes, we

note that the powers are sometimes greater than 0.05 when NetGSA with estimated network information is

applied. This is partly due to the network estimation error.
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Table A1: Powers with false discovery rate cutoff q∗ = 0.05 in experiment 1. 0.2/0.8 refer to NetGSA with
20%/80% external information; E refers to NetGSA with the exact networks; T refers to the true power;
GSA-c/GSA-s refer to Gene Set Analysis with/without randomization of the genes in 1000 permutations,
respectively; 0.2(m)/0.8(m) refer to NetGSA with 20%/80% misspecified external information.

p = 100
Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)

1 0.05 0.10 0.03 0.06 0.17 0.01 0.05 0.08
2 0.18 0.13 0.03 0.06 0.09 0.00 0.16 0.16
3 0.50 0.48 0.30 0.46 0.36 0.00 0.50 0.63
4 0.49 0.29 0.02 0.07 0.25 0.04 0.44 0.29
5 0.94 0.98 0.89 0.97 0.97 0.00 0.95 0.95
6 0.46 0.49 0.20 0.26 0.36 0.00 0.49 0.41
7 0.84 0.90 0.94 0.99 0.98 0.04 0.82 0.92
8 0.54 0.68 0.42 0.57 0.87 0.00 0.56 0.61

Table A2: Powers with false discovery rate cutoff q∗ = 0.05 in experiment 2. 0.2/0.8 refer to NetGSA with
20%/80% external information; E refers to NetGSA with the exact networks; T refers to the true power;
GSA-c/GSA-s refer to Gene Set Analysis with/without randomization of the genes in 1000 permutations,
respectively; 0.2(m)/0.8(m) refer to NetGSA with 20%/80% misspecified external information.

p = 160
Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)

1 0.10 0.11 0.02 0.05 0.07 0.01 0.10 0.11
2 0.52 0.60 0.15 0.36 0.51 0.00 0.53 0.60
3 0.96 1.00 0.95 0.99 1.00 0.00 0.97 1.00
4 0.98 1.00 1.00 1.00 1.00 0.09 0.98 1.00
5 0.38 0.34 0.02 0.11 0.10 0.03 0.41 0.36
6 0.46 0.35 0.01 0.07 0.24 0.01 0.46 0.34
7 0.78 0.83 0.89 0.92 0.99 0.00 0.78 0.82
8 0.92 0.99 1.00 1.00 1.00 0.02 0.91 0.98

C.1.2 Type I errors

To validate the type I error when the null hypothesis is true, we use the same null setup as presented in

Section 3 of the main paper for both experiment 1 and 2. The network structure and node mean expressions

under the alternative are set to be the same as in the null case. We use n1 = n2 = 25 samples for each

condition in experiment 1 and n1 = n2 = 40 in experiment 2 for pathway enrichment analysis. When the

underlying networks are not available, we estimate the networks based on external information ranging from

0%, 20%, 80% to 100% and 100 observations generated from the true network. Scenarios with misspecified

structural information are also considered. In the following, we present type I errors based on both the

adjusted FDR cutoffs and uniform FDR cutoff at q∗ = 0.05, where the former corresponds to using q∗ =

0.01 for cases 0.2, 0.8, 0.2(m) and 0.8(m), 0.05 for GSA-s and 0.10 for E and GSA-c.
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Table A3 and A4 present the type I errors based on adjusted FDR cutoffs evaluated over 100 replications

for experiment 1 and 2, respectively. As expected, the type I errors when all true parameters are plugged in

the NetGSA model are 0.05 for all subnetworks in both experiments. When the exact networks are known,

one only estimates the variance components in the NetGSA model and observes small false discovery pro-

portions. When the exact networks are not available such that one estimates the partial correlations as well

as the variance components, the type I errors are generally greater than q∗; in particular, the type I errors

get worse as the amount of external information decreases. This is likely due to the small sample sizes for

estimating the networks. In general, one benefits from having more external structural information and/or

more observations for recovering the underlying networks when using NetGSA. In comparison, both GSA-c

and GSA-s have type I errors smaller than 0.05.

Table A3: Type I error when the null hypothesis is true in experiment 1. False discovery rate cutoffs are
q∗ = 0.01 for cases 0.2, 0.8, 0.2(m) and 0.8(m), 0.05 for GSA-s and 0.10 for E and GSA-c.

Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)
1 0.00 0.00 0.00 0.05 0.02 0.03 0.00 0.01
2 0.06 0.06 0.01 0.05 0.03 0.05 0.07 0.02
3 0.29 0.16 0.02 0.05 0.01 0.02 0.28 0.14
4 0.16 0.12 0.00 0.05 0.03 0.05 0.17 0.11
5 0.02 0.01 0.01 0.05 0.00 0.03 0.03 0.01
6 0.24 0.12 0.00 0.05 0.01 0.02 0.23 0.12
7 0.18 0.13 0.03 0.05 0.03 0.05 0.19 0.14
8 0.11 0.10 0.00 0.05 0.02 0.02 0.09 0.09

Table A4: Type I error when the null hypothesis is true in experiment 2. False discovery rate cutoffs are
q∗ = 0.01 for cases 0.2, 0.8, 0.2(m) and 0.8(m), 0.05 for GSA-s and 0.10 for E and GSA-c.

Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)
1 0.03 0.03 0.00 0.05 0.01 0.03 0.03 0.03
2 0.08 0.05 0.00 0.05 0.01 0.05 0.08 0.05
3 0.17 0.09 0.00 0.05 0.01 0.01 0.17 0.08
4 0.34 0.25 0.01 0.05 0.03 0.03 0.35 0.25
5 0.25 0.09 0.00 0.05 0.01 0.02 0.27 0.11
6 0.32 0.18 0.00 0.05 0.02 0.04 0.33 0.18
7 0.23 0.13 0.00 0.05 0.00 0.04 0.28 0.13
8 0.26 0.12 0.00 0.05 0.02 0.01 0.29 0.11

As a comparison, Table A5 and A6 present the type I errors based on the uniform FDR cutoffs 0.05 eval-

uated over 100 replications for experiment 1 and 2, respectively. The reported false discovery proportions

for NetGSA with estimated networks including columns 0.2, 0.8, 0.2(m) and 0.8(m) are generally higher

than the corresponding columns in Table A3 and A4, especially pathways 2-4 and 6-8.
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Table A5: Type I error when the null hypothesis is true in experiment 1. False discovery rate cutoff is
q∗ = 0.05.

Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)
1 0.03 0.04 0.00 0.05 0.01 0.01 0.04 0.03
2 0.18 0.18 0.01 0.05 0.04 0.02 0.18 0.17
3 0.32 0.25 0.00 0.05 0.02 0.00 0.36 0.25
4 0.39 0.29 0.01 0.05 0.03 0.00 0.39 0.32
5 0.09 0.04 0.00 0.05 0.02 0.05 0.11 0.07
6 0.30 0.19 0.00 0.05 0.04 0.03 0.32 0.21
7 0.39 0.29 0.01 0.05 0.04 0.02 0.39 0.32
8 0.29 0.19 0.02 0.05 0.04 0.03 0.27 0.21

Table A6: Type I error when the null hypothesis is true in experiment 2. False discovery rate cutoff is
q∗ = 0.05.

Pathway 0.2 0.8 E T GSA-s GSA-c 0.2m 0.8m
1 0.15 0.14 0.00 0.05 0.01 0.03 0.13 0.15
2 0.14 0.12 0.00 0.05 0.00 0.01 0.15 0.12
3 0.25 0.17 0.00 0.05 0.01 0.01 0.26 0.17
4 0.33 0.26 0.00 0.05 0.04 0.01 0.32 0.28
5 0.46 0.32 0.00 0.05 0.01 0.02 0.42 0.32
6 0.43 0.26 0.00 0.05 0.02 0.03 0.44 0.26
7 0.40 0.30 0.00 0.05 0.02 0.02 0.40 0.32
8 0.47 0.29 0.00 0.05 0.01 0.01 0.46 0.29

It is important to make a distinction between the samples used for enrichment analysis and those for

network estimation. If one has access to a large number of observations that can only be used for network

estimation as well as some external structural information, then NetGSA can leverage both resources to

achieve more reliable enrichment testing. However, methods like GSA are unable to take advantage of such

rich external information.

C.2 Simulation Studies 3 and 4

C.2.1 The setup

Our third simulation experiment considers an undirected network with p = 160 and a design similar to

the second experiment. However, in this case, each of the 8 subnetworks has a denser structure and there

are more interactions between subnetworks. Specifically, there are 70 edges connecting the 20 nodes in

each subnetwork under the null. There is 30% chance of an interaction between four randomly selected

nodes from each subnetwork to four randomly selected nodes from every other subnetwork. Under the

alternative, there is an increase of 0.5 in mean values for varying proportions of nodes (0%, 30% and 50%)
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for subnetworks 1-3 and 5-7. For subnetworks 4 and 8, 70% of the nodes have mean values decreased

by 0.5. Moreover, 13% of the edges in subnetworks 5-8 under the alternative are different from their null

counterpart.

The fourth experiment uses an undirected network of size p = 400 and illustrates the scalability of

the proposed method using the new optimization algorithm. The network consists of 20 subnetworks, each

corresponding to a pathway with 20 genes. The probability of an interaction between the hub node in

one subnetwork and two randomly selected nodes from another subnetwork is 0.4. Under the null, all

subnetworks have the same topology generated from a scale-free random graph such that there are 37 edges

linking the 20 nodes; all the nodes have mean expression values 1. Under the alternative, subnetworks 1-6

and 11-16 keep the same mean expression values, but 20%, 40%, 60% and 80% of nodes in subnetworks

7-10 and 17-20 have 0.5 unit increase in their mean values, respectively. In addition, subnetworks 11-20

under the alternative all have 39 edges and their structure differs from their null equivalent by 30%. This

experiment is also of interest because we created a setting where there are enough subnetworks in order for

the permutation based Gene Set Analysis [5] to calibrate the number of permutations required.

In both experiments, we also included scenarios where a proportion of the supplied structural infor-

mation is incorrectly specified. This is to check whether NetGSA is robust to model misspecification. In

particular, about 50% (20%) of the supplied edges are actually not present in the true model for the case

r = 0.2 (r = 0.8).

C.2.2 Network estimation

Table A7 presents the deviance measures for estimating the networks with 100 replicates and sample sizes of

m = 500 for p = 160 and m = 400 for p = 400, when varying levels of external information are available.

In both experiments, we see performance improvement in Matthews correlation coefficient and Frobenius

norm loss as the correctly specified structural information of the networks r increases (r = 0.2, 0.8 cor-

responding to 20% and 80% total information, respectively). When there exists misspecified edges in the

external information (denoted by 0.2(m) and 0.8(m)), we used two tuning parameters for network estima-

tion, one for controlling the overall sparsity of the network and the other for correcting the misspecified

edges. The optimal tuning parameters were selected over a grid of values using BIC. It can be seen that the

performance of network estimation is not compromised by much after properly selected tuning parameters.
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Table A7: Deviance measures for network estimation in experiment 3 and 4. FPR(%), false positive rate
in percentage; FNR(%), false negative rate in percentage; MCC, Matthews correlation coefficient; Fnorm,
Frobenius norm loss.

p = 160 p = 400
r FPR(%) FNR(%) MCC Fnorm FPR(%) FNR(%) MCC Fnorm

Null

0.0 8.20 12.38 0.59 0.58 4.19 14.58 0.44 0.50
0.2 7.21 14.88 0.60 0.58 3.89 12.29 0.46 0.48
0.8 3.04 5.47 0.80 0.47 1.88 3.87 0.65 0.40
0.2(m) 7.48 12.83 0.60 0.57 3.89 12.44 0.46 0.49
0.8(m) 3.07 8.39 0.78 0.49 1.88 4.23 0.64 0.40

Alternative
0.0 8.16 11.62 0.59 0.57 4.25 14.70 0.44 0.50
0.2 7.15 14.41 0.60 0.57 3.96 12.38 0.46 0.48
0.8 3.02 5.24 0.80 0.46 1.95 3.75 0.64 0.40
0.2(m) 7.42 12.60 0.60 0.56 3.97 12.57 0.46 0.48
0.8(m) 3.03 8.17 0.78 0.48 1.95 4.13 0.64 0.40

C.2.3 Powers

Table A8 shows the estimated powers after correcting for false discovery rate in the third experiment with

p = 160. When the exact networks are known, NetGSA estimated powers match very well with the true

powers. In the case of unknown networks, we see consistent recovery of high powers for subnetworks 3, 4,

6, 7 and 8 using NetGSA even with only 20% external information. This suggests that, with large enough

samples for network estimation, a small amount of external knowledge is sufficient for making reliable

inference using the network-based method. Interestingly, GSA-c identifies only subnetworks 3 and 4 as

significantly differential with high power, whereas GSA-s returns relatively high power for subnetworks

3 and 6 but surprisingly low power for subnetwork 8. One possible reason for this pattern is that the busy

interactions between subnetworks and the negative mean changes in subnetworks 4 and 8 affected the ability

of GSA to properly recognize the correct differential behavior. The last two columns in Table A8 show the

estimated powers from NetGSA when the external information is misspecified. For both cases (r = 20%

and r = 80%), the results bear high similarity to those in the first two columns, which suggests that NetGSA

is robust to model misspecification.

The estimated powers after correcting for false discovery rate in the fourth experiment are shown sep-

arately in Table A10. When the exact networks with the correct edge weights are known, we again see

that NetGSA estimated powers match the true powers closely, with very low powers for subnetworks 1-6

which have no changes in neither mean expressions nor structures, high powers for subnetworks 8-10 which

have significant changes in mean expression values, low powers for subnetworks 11-16 that have changes in
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Table A8: Powers in experiment 3. 0.2/0.8 refer to NetGSA with 20%/80% external information; E refers
to NetGSA with the exact networks; T refers to the true power; GSA-c/GSA-s refer to Gene Set Analysis
with/without randomization of the genes in 1000 permutations, respectively; 0.2(m)/0.8(m) refer to NetGSA
with 20%/80% misspecified external information. False discovery rate cutoffs are q∗ = 0.01 for 0.2, 0.8,
0.2(m), 0.8(m) and GSA-s, 0.10 for E and GSA-c.

p = 160
Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)

1 0.00 0.00 0.05 0.05 0.06 0.04 0.00 0.00
2 0.49 0.50 0.77 0.71 0.59 0.04 0.49 0.52
3 0.75 0.71 0.91 0.90 0.97 0.76 0.78 0.72
4 0.90 0.88 1.00 0.99 0.59 0.97 0.89 0.87
5 0.18 0.12 0.07 0.05 0.48 0.03 0.17 0.13
6 0.47 0.44 0.66 0.68 0.78 0.27 0.48 0.44
7 0.68 0.62 0.96 0.95 0.64 0.04 0.69 0.60
8 0.76 0.77 0.99 1.00 0.14 0.50 0.77 0.75

Table A9: Powers in experiment 3. 0.2/0.8 refer to NetGSA with 20%/80% external information; E refers
to NetGSA with the exact networks; T refers to the true power; GSA-c/GSA-s refer to Gene Set Analysis
with/without randomization of the genes in 1000 permutations, respectively; 0.2(m)/0.8(m) refer to NetGSA
with 20%/80% misspecified external information. False discovery rate cutoffs are q∗ = 0.05.

p = 160
Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)

1 0.02 0.02 0.01 0.05 0.02 0.00 0.02 0.02
2 0.70 0.72 0.67 0.71 0.65 0.02 0.72 0.75
3 0.81 0.78 0.87 0.90 0.97 0.39 0.80 0.80
4 0.95 0.92 0.99 0.99 0.53 0.79 0.94 0.92
5 0.30 0.32 0.03 0.05 0.44 0.00 0.27 0.31
6 0.56 0.65 0.63 0.68 0.88 0.11 0.57 0.66
7 0.78 0.74 0.93 0.95 0.72 0.06 0.78 0.76
8 0.90 0.87 1.00 1.00 0.12 0.27 0.88 0.88

structures and very high powers for pathways 17-20 with changes in both. When there is 20% external in-

formation on the underlying network topology, NetGSA’s powers for subnetworks 8-10 and 18-20 are close

to true powers. However, NetGSA overestimates the powers for subnetworks 11-16. This is due to the small

sample size (m = 400) for estimating the underlying networks. When the external information is slightly

misspecified, the last two columns indicate that NetGSA still returns valid powers that are comparable to

those obtained with correctly specified structural information. In comparison, GSA-s believes almost all

subnetworks except 1-6 are significantly differential. On the other hand, when testing against the competi-

tive null, the results from GSA-c suggest that only subnetworks 10, 19 and 20 are significantly differential.

The conflicting results from GSA with or without randomization of the genes also raise concerns as to which

version to choose in practice.
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Table A10: Powers in experiment 4. 0.2/0.8 refer to NetGSA with 20%/80% external information; E refers
to NetGSA with the exact networks; T refers to the true power; GSA-c/GSA-s refer to Gene Set Analysis
with/without randomization of the genes in 1000 permutations, respectively; 0.2(m)/0.8(m) refer to NetGSA
with 20%/80% misspecified external information. False discovery rate cutoffs are q∗ = 0.01 for 0.2, 0.8,
0.2(m) and 0.8(m), 0.05 for GSA-s and 0.10 for E and GSA-c.

p = 400
Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)

1 0.02 0.02 0.05 0.05 0.09 0.03 0.02 0.02
2 0.14 0.12 0.06 0.05 0.13 0.03 0.15 0.12
3 0.19 0.18 0.05 0.05 0.11 0.01 0.18 0.18
4 0.29 0.24 0.03 0.05 0.15 0.04 0.30 0.25
5 0.32 0.29 0.05 0.05 0.15 0.02 0.32 0.29
6 0.46 0.44 0.05 0.05 0.18 0.03 0.44 0.43
7 0.56 0.50 0.85 0.83 0.93 0.00 0.58 0.52
8 0.75 0.73 1.00 1.00 1.00 0.00 0.75 0.73
9 0.92 0.89 1.00 1.00 1.00 0.19 0.93 0.89
10 0.98 0.99 1.00 1.00 1.00 1.00 0.98 0.99
11 0.49 0.46 0.09 0.06 1.00 0.00 0.47 0.48
12 0.57 0.60 0.07 0.07 1.00 0.00 0.54 0.59
13 0.59 0.57 0.07 0.05 1.00 0.05 0.59 0.57
14 0.58 0.63 0.12 0.07 0.99 0.03 0.59 0.63
15 0.58 0.66 0.07 0.07 0.99 0.02 0.57 0.66
16 0.60 0.50 0.08 0.07 1.00 0.03 0.57 0.51
17 0.65 0.68 0.90 0.89 1.00 0.02 0.63 0.68
18 0.73 0.81 1.00 1.00 1.00 0.34 0.74 0.80
19 0.85 0.85 1.00 1.00 1.00 1.00 0.85 0.86
20 0.86 0.88 1.00 1.00 1.00 1.00 0.86 0.87

C.2.4 Type I errors

Finally, we also look at the scenarios where the null hypothesis is true for experiment 3 and 4. Again we

present type I errors obtained based on both the adjusted FDR cutoffs and the uniform FDR cutoffs at 0.05,

where the adjusted FDR cutoffs are q∗ = 0.01 for 0.2, 0.8, 0.2(m) and 0.8(m), 0.05 for GSA-s and 0.10 for

E and GSA-c. The results can be found in Tables A12, A13, A14 and A15.

Since the sample size used for network estimation in experiment 3 is sufficiently large, we observe very

good control of type I errors in Table A12 for NetGSA, even with estimated networks. In Table A14, type

I errors are high for some pathways, which is again due to the small sample size for estimating 400 × 400

networks.
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Table A11: Powers in experiment 4. 0.2/0.8 refer to NetGSA with 20%/80% external information; E refers
to NetGSA with the exact networks; T refers to the true power; GSA-c/GSA-s refer to Gene Set Analysis
with/without randomization of the genes in 1000 permutations, respectively; 0.2(m)/0.8(m) refer to NetGSA
with 20%/80% misspecified external information. False discovery rate cutoffs are q∗ = 0.05.

p = 400
Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)

1 0.10 0.11 0.04 0.05 0.10 0.03 0.10 0.11
2 0.25 0.20 0.04 0.05 0.12 0.03 0.25 0.20
3 0.37 0.34 0.02 0.05 0.07 0.00 0.36 0.31
4 0.36 0.38 0.05 0.05 0.19 0.03 0.36 0.38
5 0.57 0.51 0.03 0.05 0.08 0.01 0.58 0.51
6 0.48 0.45 0.05 0.05 0.11 0.01 0.48 0.45
7 0.58 0.58 0.69 0.83 0.83 0.00 0.56 0.59
8 0.84 0.82 1.00 1.00 1.00 0.00 0.85 0.83
9 0.94 0.93 1.00 1.00 1.00 0.11 0.93 0.93
10 0.98 0.97 1.00 1.00 1.00 0.91 0.98 0.97
11 0.65 0.66 0.01 0.06 1.00 0.00 0.67 0.64
12 0.64 0.68 0.06 0.07 1.00 0.01 0.64 0.67
13 0.63 0.58 0.00 0.05 1.00 0.03 0.63 0.58
14 0.71 0.72 0.04 0.07 0.99 0.00 0.69 0.72
15 0.67 0.69 0.03 0.07 1.00 0.02 0.66 0.69
16 0.68 0.61 0.02 0.07 1.00 0.00 0.69 0.62
17 0.68 0.68 0.76 0.89 1.00 0.00 0.68 0.69
18 0.74 0.78 0.99 1.00 1.00 0.08 0.78 0.78
19 0.93 0.94 1.00 1.00 1.00 0.92 0.91 0.94
20 0.90 0.92 1.00 1.00 1.00 0.99 0.92 0.92

D Additional Results on Metabolomics and Genomics

Table A16, A17 and A18 present the full list of pathways used in each of the studies and their corresponding

false discovery rate corrected p-values, respectively.
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mation based on gaussian graphical models. Journal of Machine Learning Research, 12:2975–3026,
2011.

24



Table A14: Type I error when the null hypothesis is true in experiment 4. False discovery rate cutoffs are
q∗ = 0.01 for 0.2, 0.8, 0.2(m) and 0.8(m), 0.05 for GSA-s and 0.10 for E and GSA-c.

Pathway 0.2 0.8 E T GSA-s GSA-c 0.2m 0.8m
1 0.03 0.03 0.02 0.05 0.03 0.02 0.03 0.03
2 0.21 0.18 0.00 0.05 0.02 0.00 0.21 0.18
3 0.24 0.26 0.00 0.05 0.04 0.01 0.25 0.26
4 0.25 0.29 0.02 0.05 0.03 0.01 0.26 0.28
5 0.34 0.35 0.02 0.05 0.01 0.01 0.35 0.34
6 0.41 0.40 0.01 0.05 0.03 0.02 0.42 0.41
7 0.37 0.40 0.01 0.05 0.02 0.00 0.40 0.39
8 0.43 0.40 0.02 0.05 0.02 0.02 0.41 0.39
9 0.48 0.52 0.01 0.05 0.02 0.01 0.50 0.52

10 0.45 0.52 0.01 0.05 0.02 0.02 0.44 0.51
11 0.45 0.47 0.00 0.05 0.03 0.00 0.45 0.48
12 0.50 0.50 0.03 0.05 0.02 0.06 0.51 0.49
13 0.55 0.51 0.00 0.05 0.04 0.01 0.55 0.52
14 0.63 0.65 0.01 0.05 0.03 0.00 0.60 0.65
15 0.52 0.50 0.02 0.05 0.02 0.02 0.52 0.50
16 0.56 0.54 0.02 0.05 0.02 0.04 0.57 0.52
17 0.63 0.67 0.02 0.05 0.03 0.00 0.64 0.66
18 0.58 0.55 0.01 0.05 0.03 0.02 0.57 0.57
19 0.59 0.59 0.01 0.05 0.02 0.04 0.58 0.60
20 0.53 0.51 0.01 0.05 0.01 0.03 0.55 0.52
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Table A15: Type I error when the null hypothesis is true in experiment 4. False discovery rate cutoff is
q∗ = 0.05.

Pathway 0.2 0.8 E T GSA-s GSA-c 0.2m 0.8m
1 0.03 0.04 0.00 0.05 0.02 0.00 0.03 0.03
2 0.27 0.27 0.00 0.05 0.04 0.00 0.27 0.26
3 0.36 0.36 0.00 0.05 0.04 0.00 0.35 0.35
4 0.39 0.40 0.01 0.05 0.04 0.02 0.40 0.41
5 0.51 0.49 0.01 0.05 0.04 0.00 0.52 0.51
6 0.59 0.59 0.00 0.05 0.02 0.00 0.61 0.58
7 0.56 0.54 0.00 0.05 0.02 0.02 0.55 0.53
8 0.61 0.60 0.01 0.05 0.04 0.04 0.58 0.58
9 0.59 0.60 0.00 0.05 0.02 0.02 0.59 0.59

10 0.61 0.59 0.00 0.05 0.04 0.00 0.58 0.62
11 0.60 0.58 0.00 0.05 0.04 0.01 0.61 0.58
12 0.63 0.60 0.00 0.05 0.03 0.00 0.60 0.60
13 0.64 0.64 0.01 0.05 0.02 0.02 0.62 0.67
14 0.56 0.67 0.03 0.05 0.02 0.03 0.56 0.68
15 0.73 0.76 0.00 0.05 0.02 0.00 0.71 0.77
16 0.64 0.60 0.00 0.05 0.02 0.01 0.63 0.63
17 0.68 0.64 0.00 0.05 0.02 0.01 0.64 0.62
18 0.64 0.64 0.00 0.05 0.04 0.00 0.58 0.63
19 0.70 0.60 0.00 0.05 0.02 0.01 0.66 0.60
20 0.72 0.73 0.00 0.05 0.04 0.00 0.71 0.73
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Table A16: p-values after false discovery rate correction for all pathways in the metabolomics data
Pathway NetGSA GSA-s GSA-c
Tryptophan metabolism 3e−5 0.00 1.00
beta-Alanine metabolism 3e−5 0.00 1.00
Aminoacyl-tRNA biosynthesis 2e−4 0.00 1.00
ABC transporters 4e−4 0.00 1.00
Fatty acid biosynthesis 2e−3 1.00 1.00
Pyrimidine metabolism 2e−3 0.00 1.00
Phenylalanine metabolism 4e−3 0.00 1.00
Pantothenate and CoA biosynthesis 0.01 0.00 1.00
Phenylalanine, tyrosine and tryptophan biosynthesis 0.02 1.00 1.00
Caffeine metabolism 0.04 0.15 1.00
Glycine, serine and threonine metabolism 0.15 4e−3 1.00
Lysine biosynthesis 0.19 1.00 1.00
Methionine metabolism 0.20 1.00 1.00
Histidine metabolism 0.26 0.00 0.42
Propanoate metabolism 0.34 0.04 1.00
Arginine and proline metabolism 0.39 0.06 1.00
Glutathione metabolism 0.43 0.12 1.00
Arginine biosynthesis 0.47 0.01 1.00
Alanine and aspartate metabolism 0.57 1.00 1.00
Valine, leucine and isoleucine biosynthesis 0.61 1.00 1.00
Purine metabolism 1.00 0.03 1.00
Glutamate metabolism 1.00 1.00 1.00
Tyrosine metabolism 1.00 1.00 1.00
Cyanoamino acid metabolism 1.00 1.00 1.00
Nitrogen metabolism 1.00 0.43 1.00
Tropane, piperidine and pyridine alkaloid biosynthesis 1.00 0.02 1.00
Neuroactive ligand-receptor interaction 1.00 0.02 1.00
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Table A17: p-values after false discovery rate correction for all pathways in the Lung cancer data
Pathway NetGSA GSA-s GSA-c
Jak-STAT signaling pathway 0.18 0.31 1.00
p53 signaling pathway 0.22 0.68 1.00
Wnt signaling pathway 0.28 0.61 1.00
mTOR signaling pathway 0.42 0.46 1.00
Glutathione metabolism 0.42 1.00 1.00
Purine metabolism 0.49 0.46 1.00
Cysteine and methionine metabolism 0.49 0.46 1.00
ErbB signaling pathway 0.74 0.07 1.00
Chemokine signaling pathway 0.74 0.61 1.00
MAPK signaling pathway 0.77 0.61 1.00
Pentose phosphate pathway 0.82 1.00 1.00
Pyrimidine metabolism 0.83 0.46 1.00
Cell cycle 0.87 0.80 1.00
Glycolysis / Gluconeogenesis 1.00 0.98 1.00
Citrate cycle (TCA cycle) 1.00 1.00 1.00
Fructose and mannose metabolism 1.00 1.00 1.00
Galactose metabolism 1.00 1.00 1.00
Fatty acid metabolism 1.00 1.00 1.00
Oxidative phosphorylation 1.00 1.00 1.00
Alanine, aspartate and glutamate metabolism 1.00 1.00 1.00
Valine, leucine and isoleucine degradation 1.00 1.00 1.00
Lysine degradation 1.00 1.00 1.00
Arginine and proline metabolism 1.00 1.00 1.00
Histidine metabolism 1.00 1.00 1.00
Tyrosine metabolism 1.00 1.00 1.00
Tryptophan metabolism 1.00 1.00 1.00
beta-Alanine metabolism 1.00 1.00 1.00
Starch and sucrose metabolism 1.00 0.61 1.00
Amino sugar and nucleotide sugar metabolism 1.00 1.00 1.00
PPAR signaling pathway 1.00 1.00 1.00
Calcium signaling pathway 1.00 1.00 1.00
Phosphatidylinositol signaling system 1.00 1.00 1.00
Notch signaling pathway 1.00 0.68 1.00
Hedgehog signaling pathway 1.00 1.00 1.00
TGF-beta signaling pathway 1.00 1.00 1.00
VEGF signaling pathway 1.00 0.98 1.00
Toll-like receptor signaling pathway 1.00 0.98 1.00
NOD-like receptor signaling pathway 1.00 0.61 1.00
RIG-I-like receptor signaling pathway 1.00 1.00 1.00
T cell receptor signaling pathway 1.00 0.46 1.00
B cell receptor signaling pathway 1.00 0.61 1.00
Fc epsilon RI signaling pathway 1.00 0.98 1.00
Neurotrophin signaling pathway 1.00 0.46 1.00
Insulin signaling pathway 1.00 0.46 1.00
GnRH signaling pathway 1.00 1.00 1.00
Adipocytokine signaling pathway 1.00 1.00 1.00
Epithelial cell signaling in Helicobacter pylori infection 1.00 1.00 1.00

28



Table A18: p-values after false discovery rate correction for all pathways in the TCGA data
Pathway NetGSA GSA-s GSA-c
Epithelial cell signaling in Helicobacter pylori infection 5e−95 0.00 1.00
Cell cycle 2e−47 0.00 1.00
Galactose metabolism 3e−31 0.00 1.00
Glutathione metabolism 1e−27 0.00 1.00
NOD-like receptor signaling pathway 1e−24 0.00 1.00
Pyrimidine metabolism 4e−23 0.00 1.00
Cysteine and methionine metabolism 1e−22 0.00 1.00
Starch and sucrose metabolism 1e−18 0.00 1.00
Toll-like receptor signaling pathway 1e−18 0.00 1.00
Glycolysis / Gluconeogenesis 3e−17 0.00 1.00
Jak-STAT signaling pathway 9e−15 0.00 1.00
Chemokine signaling pathway 3e−14 0.00 1.00
ErbB signaling pathway 7e−13 0.00 1.00
p53 signaling pathway 7e−12 0.00 1.00
Hedgehog signaling pathway 5e−10 0.00 1.00
beta-Alanine metabolism 1e−7 0.00 1.00
Fc epsilon RI signaling pathway 5e−7 0.00 1.00
Fructose and mannose metabolism 2e−6 0.00 1.00
Pentose phosphate pathway 2e−6 0.00 1.00
PPAR signaling pathway 5e−6 0.00 1.00
Adipocytokine signaling pathway 4e−5 0.00 1.00
Purine metabolism 6e−5 0.00 1.00
Valine, leucine and isoleucine degradation 5e−4 1e−3 1.00
GnRH signaling pathway 2e−3 0.00 1.00
TGF-beta signaling pathway 3e−3 0.00 1.00
Neurotrophin signaling pathway 0.02 0.00 1.00
Fatty acid metabolism 0.03 0.01 1.00
Oxidative phosphorylation 0.04 0.00 1.00
Lysine degradation 0.04 0.00 1.00
Arginine and proline metabolism 0.06 0.00 1.00
VEGF signaling pathway 0.07 0.00 1.00
mTOR signaling pathway 0.08 0.00 1.00
Glycine serine and threonine metabolism 0.10 0.00 1.00
Phosphatidylinositol signaling system 0.17 0.00 1.00
Notch signaling pathway 0.65 0.00 1.00
MAPK signaling pathway 0.82 0.00 1.00
Citrate cycle (TCA cycle) 1.00 0.00 1.00
Tryptophan metabolism 1.00 0.00 1.00
Amino sugar and nucleotide sugar metabolism 1.00 0.00 1.00
Calcium signaling pathway 1.00 0.00 1.00
Wnt signaling pathway 1.00 0.00 1.00
RIG-I-like receptor signaling pathway 1.00 0.00 1.00
T cell receptor signaling pathway 1.00 0.00 1.00
B cell receptor signaling pathway 1.00 0.00 1.00
Insulin signaling pathway 1.00 0.00 1.00
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