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Abstract
Gaussian graphical models capture dependence relationships between random variables through
the pattern of nonzero elements in the corresponding inverse covariance matrices. To date, there
has been a large body of literature on both computational methods and analytical results on the
estimation of a single graphical model. However, in many application domains, one has to estimate
several related graphical models, a problem that has also received attention in the literature. The
available approaches usually assume that all graphical models are globally related. On the other
hand, in many settings different relationships between subsets of the node sets exist between differ-
ent graphical models. We develop methodology that jointly estimates multiple Gaussian graphical
models, assuming that there exists prior information on how they are structurally related. For many
applications, such information is available from external data sources. The proposed method con-
sists of first applying neighborhood selection with a group lasso penalty to obtain edge sets of the
graphs, and a maximum likelihood refit for estimating the nonzero entries in the inverse covariance
matrices. We establish consistency of the proposed method for sparse high-dimensional Gaussian
graphical models and examine its performance using simulation experiments. Applications to a
climate data set and a breast cancer data set are also discussed.
Keywords: Gaussian graphical model, structured sparsity, group lasso penalty, consistency, edge
set recovery

1. Introduction

There has been a large amount of work over the last few years on estimating Gaussian graphical
models from high-dimensional data. In this family of models, jointly normally distributed random
variables are represented by the nodes of a graph, while its edges reflect conditional dependence
relationships amongst nodes that are captured through the nonzero entries of the inverse covariance
matrix (or precision matrix) (Lauritzen, 1996; Edwards, 2000). Formally, let X be a p-dimensional
multivariate normal random vector where

X = (X1, . . . , Xp) ∼ N (µ,Σ).
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For 1 ≤ i 6= j ≤ p, Xi and Xj are said to be conditionally independent given all the remaining
variables, if the corresponding entry in the precision matrix Ω = Σ−1 is zero. An edge between
the nodes Xi and Xj in the graph implies that they are conditionally dependent and corresponds
to a nonzero entry in the precision matrix. To identify the graph, one only needs to select the
corresponding precision matrix.

Bühlmann and van de Geer (2011, chap. 13) gave an overview of statistical methods developed
for estimating a Gaussian graphical model subject to sparsity constraints, an attractive feature that
reduces the number of parameters to be estimated and also enhances interpretability of the results.
These models have found applications in diverse fields including analysis of omics data (Perroud
et al., 2006; Pujana et al., 2007; Putluri et al., 2011), reconstruction of gene regulatory networks
(Dehmer and Emmert-Streib, 2008, chap. 6), as well as study of climate networks (Zerenner et al.,
2014).

More recently, the focus has shifted from estimating a single graphical model to joint estimation
of multiple graphs due to the availability of heterogeneous data (see discussion in Guo et al., 2011).
For example, climate models capturing relationships between climate defining variables over a large
area share common patterns; i.e. there are shared common links and also sharing of absence of links
between the models (networks at different spatial locations). While separate estimation of indi-
vidual models without taking the known pattern into consideration ignores the common structure,
estimating one single model could mask the differences that could prove critical in understanding
local climate features.

Several authors have studied the problem of jointly estimating multiple graphical models under
different assumptions on how the models are related. Guo et al. (2011) introduced a procedure us-
ing a hierarchical penalty on the log-likelihood, whose objective is to estimate the common zeros
(absence of edges) in the precision matrix across all graphical models under consideration. Thus,
the procedure borrows strength across models through the the non-connected nodes, but does not
impose any structure on the connected ones. Danaher et al. (2014) proposed a joint graphical lasso
by maximizing the log-likelihood subject to a generalized fused lasso or group lasso penalty, which
can be solved efficiently by a standard alternating directions method of multipliers algorithm (Boyd
et al., 2011). When employing a group lasso penalty, the underlying assumption is that the vari-
ous observed graphical models are perturbations of a single common connectivity pattern across
all graphical models, while when using a fused lasso across all models a similar outcome occurs,
although more heterogeneity between estimated graphical models can be obtained depending on the
tuning of the penalties. The work by Zhu et al. (2014) investigates the joint estimation problem
by introducing a truncated `1 penalty on the pairwise differences between the precision matrices to
achieve entry-wise clustering of the network structure over multiple graphs. Peterson et al. (2015)
introduced a Bayesian approach that links the estimation of the graphs via a Markov random field
prior for common structures. Further, a spike-and-slab prior is placed on the parameters that mea-
sure the similarity between graphs, thus relaxing the assumption on sharing a common structure
across all graphical models.

Despite recent advances in joint estimation algorithms, theoretical properties of the resulting
estimators have not been fully investigated. Guo et al. (2011) represents an exception, wherein
asymptotic properties of the resulting estimator are established for consistent recovery of the com-
mon zeros across multiple precision matrices, which is the focus of that procedure. Zhu et al. (2014)
focused mainly on efficient computational algorithms when the graphs have disjoint subgraphs, with
a brief mention of consistency of precision matrices in a special temporal setting; however, no the-
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oretical guarantees are provided for more general settings. Finally, many papers only present algo-
rithms for joint estimation of the Gaussian graphical models under consideration, but no theoretical
properties of the estimates (Honorio and Samaras, 2010; Chiquet et al., 2011; Danaher et al., 2014;
Mohan et al., 2014).

In this paper, we investigate estimation of multiple graphical models under complex structural
relationships, assuming that there exists prior information on their specification. In many applica-
tions, such information is available and may come from prior knowledge in the literature of relation-
ships among different node subsets of the graphical models under consideration, or from clustering
of all graphs. The approach allows sharing common sub-graph components between different mod-
els and does not require sharing of values for the same element across multiple precision matrices.
The proposed method, called the Joint Structural Estimation Method (JSEM), leverages structured
sparsity patterns as illustrated in Section 2 and is a two-step procedure. In the first step, we infer
the sparse graphical models by incorporating the available structure through a group lasso penalty.
In the second step, we maximize the Gaussian log-likelihood subject to the edge set constraints
obtained from the previous step. Numerically, JSEM demonstrates superior performance in con-
trolling both the number of false positive and false negative edges compared to available methods.
When applied to joint modeling of climate networks, our results highlight the different roles climate
defining factors play at different regions of the United States. In another application to breast can-
cer gene expression data, the JSEM methodology reveals interesting differences in the molecular
network rewiring between the ER+ and ER- classes (see extensive discussion in Section 5.2). Un-
derstanding the rewiring of biological networks under different conditions provides deeper insights
into biological mechanisms of disease, especially when combined with topology-based pathway
enrichment methods as discussed and illustrated in Ma et al. (2016) and Kaushik et al. (2016).

The contributions of this work are three-fold. First, we develop a general framework for the
problem of joint estimation of multiple Gaussian graphical models. The method can incorporate de-
tailed structural information regarding relationships between subsets of the graphical models, while
in the absence of such information reduces to the group graphical lasso procedure of Danaher et al.
(2014). Further, we establish that the JSEM estimator is consistent with a fast rate of convergence
in terms of the Frobenius norm for the estimated precision matrices. We also establish rigorously the
consistent recovery of the edge sets for JSEM under suitable regularity conditions. Finally, when
the externally provided structured sparsity pattern is moderately misspecified, we provide a mod-
ified estimator that reduces the number of false positive edges identified due to prior information
misspecification, thus further enhancing the applicability of JSEM.

The paper is organized as follows. Section 2 discusses the structural relationships model used
in this work and presents the estimation procedure. Section 3 presents the theoretical properties of
the proposed method, followed by simulation studies in Section 4 and two real data applications—
climate modeling and genomics of breast cancer—are presented in Section 5. We conclude with a
discussion in Section 6. Most details of the theoretical analysis and proofs, additional simulation
results as well as additional analyses on the applications are relegated to the Appendix.

2. The Joint Structural Estimation Method

Suppose we are interested in estimating K Gaussian graphical models from their corresponding K
independent data sets, assuming that the models exhibit complex relationships between their edge
sets. The data in the k-th model are organized in an nk×pmatrix Xk = (Xk

1, · · · ,Xk
p), where each
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Figure 1: Image plots of the adjacency matrices for four graphical models with vertex set
{1, . . . , p}. The black color represents presence of an edge. The structured sparsity
pattern is encoded in G = ∪1≤i<j≤pG ij , where G ij = {[1, 3], [2, 4]} for (i, j) ∈
{bp/2c+ 1, . . . , p} and G ij = {[1, 2], [3, 4]} for all other pairs of (i, j).

row represents one observation fromN (0,Σk
0), k = 1, . . . ,K. Throughout the remaining sections,

we reserve the notations Σ0,Ω0, . . . to denote the population parameters in the true model and use
Σ,Ω, . . . to denote generic parameters. Without loss of generality, we assume the columns of Xk

are centered and standardized to have mean zero and unit variance. For ease of presentation, it is
assumed that the sample size nk = n for all k = 1, . . . ,K, but the modeling framework can easily
accommodate unequal sample sizes. Our goal is to estimate jointly Ωk

0 = (Σk
0)−1 for all k, under

the assumption that the K corresponding graphs are related via a structured sparsity pattern G . For
example, consider climate models capturing relationships between climate forcing variables defined
over a pre-specified spatial domain. Models that belong to the same climate zone may exhibit greater
similarity in their graph structures than those from different zones. Thus, one can define G based on
their spatial locations. Figure 1 gives an illustration of the structured sparsity among four graphical
models in terms of their adjacency matrices. This pattern indicates that sharing of structures may
occur at different subsets of the edge set, which motivates us to develop a joint estimation method
that can incorporate such rich and complex structural information.

2.1 Neighborhood Selection

Neighborhood selection was introduced by Meinshausen and Bühlmann (2006) as an efficient method
to construct Gaussian graphical models from high-dimensional data. For each node i = 1, . . . , p in
the graphical model, consider the optimal prediction of the random variable Xi as a linear combi-
nation of the remaining variables:

Xi =
∑
j 6=i

θijXj + εi,

where θij (j 6= i) are the regression coefficients and εi ⊥ {Xj : j 6= i}. The matrix (θij)1≤i,j≤p
is determined by the inverse covariance matrix Ω = (ωij)1≤i,j≤p. Specifically, it holds that θij =
−ωij/ωii, for all j 6= i. The set of nonzero coefficients of θij (j 6= i) is thus the same as the set
of nonzero entries in the row vector of ωij (j 6= i), which defines the set of neighbors of node i.
Using an l1-penalized regression, Meinshausen and Bühlmann (2006) estimated the neighborhood
for each node and combined the estimates to obtain the underlying graph.
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2.2 An Illustrative Example

We first illustrate how to extend the idea of neighborhood selection to multiple graphical models us-
ing the example in Figure 1. For k = 1, . . . ,K, let (θkij)p×p be the matrix of regression coefficients
in graph k and θki the vector of all θkij (j 6= i) for node i = 1, . . . , p. Unless otherwise stated, all
vectors are assumed to be column vectors. For node i in a single graph k, neighborhood selection
suggests estimating the coefficients θki by

min
θk
i

1

n
‖Xk

i −Xk
−iθ

k
i ‖2 + 2λ

∑
j 6=i
|θkij |,

where Xk
−i is Xk with the i-th column removed, ‖ · ‖ represents the standard Euclidean norm and

λ is the regularization parameter. To achieve joint estimation, consider the following regularized
regression problem

min
Θi

1

n

K∑
k=1

‖Xk
i −Xk

−iθ
k
i ‖2 + 2Pλ(Θi), (1)

where K = 4,Θi = (θ1
i , . . . ,θ

K
i ) and Pλ(Θi) is a regularization term to be determined next. Note

that each column of Θi represents the regression coefficients from one graphical model and each
row of Θi corresponds to the four coefficients at the same (i, j) pair.

The penalty Pλ(Θi) is chosen based on information from the structured sparsity pattern G in
Figure 1. For example, for i = 1 with grouping {[1, 2], [3, 4]},

Θ1 =


θ1

12 θ2
12 θ3

12 θ4
12

...
...

θ1
1p θ2

1p θ3
1p θ4

1p

 .

As indicated by the colors, we can then group the coefficients in the j-th row of Θ1 (j = 2, . . . , p)
as

(θ1
1j , θ

2
1j︸ ︷︷ ︸

θ
[1,2]
1j

, θ3
1j , θ

4
1j︸ ︷︷ ︸

θ
[3,4]
1j

)

and set Pλ(Θ1) to be the group lasso penalty∑
j=2,...,p

∑
g=[1,2],[3,4]

λg1j‖θ
[g]
1j ‖.

The group lasso penalty forces the two coefficients in each group to be zero or nonzero at the same
time, leading to the same structure for graphical models belonging to the same group.

The solution Θ̂i to (1) for i = 1, . . . , p can then be used for graph selection.

2.3 The General Case

Denote the structured sparsity pattern by G = ∪1≤i<j≤pG ij , where the union is over all p(p− 1)/2
pairs of potential edges. Each G ij is a partition of the set {1, 2, · · · ,K} and consists of prior
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knowledge on the structural similarity for the (i, j)-th pair across models. For example in Figure
1, G ij = {[1, 2], [3, 4]} means that the graphs 1 and 2 exhibit the same structure at (i, j), whereas
3 and 4 behave the same at (i, j). It is possible for all four graphs to have the edge (i, j) or not
have the edge (i, j) at the same time, but we do not impose this restriction. Taking the union
over all pairs, G = {[1, 2], [3, 4], [1, 3], [2, 4]} in Figure 1. Therefore the pattern G allows a more
flexible structural relationships among multiple graphical models. Further, the sparsity pattern in G
is symmetric as we require G ji = G ij for i < j.

For 1 ≤ i < j ≤ p and a group g ∈ G ij , denote by θ[g]
ij the vector (θkij)k∈g, a concatenation of all

regression coefficients from graphs in g. The grouping for the regression coefficients (θ1
ij , . . . , θ

K
ij )

is determined by G ij . Under correctly specified G , all coefficients in the same group should be zero
or nonzero simultaneously. For k = 1, . . . ,K, let Ek = {(i, j) : θkij 6= 0} be the set of undirected
edges in graph k and S+

Ek = {Ω : Ω � 0 and ωij = 0 for all (i, j) /∈ Ek where i 6= j}.
The Joint Structural Estimation Method (JSEM) proceeds with the following two steps.

(I) For k = 1, . . . ,K, we infer the sparse graphs Êk through the following group lasso estimator.
For i = 1, . . . , p,

min
Θi

 1

n

K∑
k=1

‖Xk
i −Xk

−iθ
k
i ‖2 + 2

∑
j:j 6=i

∑
g∈G ij

λgij‖θ
[g]
ij ‖

 . (2)

Êk is estimated to be the set

{(i, j) : 1 ≤ i < j ≤ p, θ̂kij 6= 0 OR θ̂kji 6= 0}. (3)

(II) We refit the model by

min
Ωk∈S+

Êk

{
tr(Σ̂kΩk)− log det(Ωk)

}
, k = 1, . . . ,K. (4)

Note the grouped variables in (2) are non-overlapping because G ij partitions the set {1, . . . ,K}
into disjoint subsets. The ‘OR’ rule defined in (3) can be replaced by the ‘AND’ rule. The problems
in (2) and (4) are both convex and can thus be solved by available convex optimization algorithms.
In this work, we use the R-package grpreg (Breheny and Huang, 2009) for implementation of
the group lasso penalized optimization (2) and the glasso (Friedman et al., 2008) one for solv-
ing (4). The computational complexity for step (II) is O(Kp3) using the standard graphical lasso
algorithm. Since grpreg uses a coordinate descent algorithm, the computational complexity for
step (I) can be as fast as O(nKp2) if the number of graphs K does not exceed the sample size n,
or O(K2p2) otherwise. Thus, the overall computational complexity of JSEM is O(Kp3) if p > K,
and O(K2p2) otherwise.

2.4 Choice of Tuning Parameters

Like any other penalty-based method, JSEM requires selection of the tuning parameters λgij for all
p regressions in (2). One can customize λgij for each 3-tuple (i, j, g) based on prior knowledge on
graph similarity or simply use the same λ for all 3-tuples (i, j, g). In the sequel, we present results
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based on the latter approach. We recommend choosing the tuning parameters via the Bayesian
information criterion (BIC). Specifically, for a given λ, we define BIC for the proposed method as

BIC(λ) =

K∑
k=1

{
tr(Σ̂kΩ̂k

λ)− log det(Ω̂k
λ) +

log(nk)

nk
|Êk|

}
,

where Ω̂k
λ (k = 1, . . . ,K) are the estimated precision matrices from the data. The optimal tuning

parameter is thus λ∗ = argminλ∈Dn
BIC(λ), where the set of values Dn is chosen such that for

every λj ∈ Dn (nk = n):

λj = cj

(
|gmax|+

√
logG0

)/√
n, cj = 0.02 ∗ j, j = 1, . . . , 20.

Here |gmax| and G0 refer, respectively, to the maximum size of groups in G and maximum total
number of groups in all regressions. They can be conveniently defined by the input sparsity pattern.
In practice, it is also recommended to apply the stability selection procedure (Meinshausen and
Bühlmann, 2010; Shah and Samworth, 2013) to select graphical models that are both stable and
interpretable.

3. Theoretical Results

The JSEM estimator enjoys nice theoretical properties under certain regularity conditions. Specifi-
cally, we establish the norm consistency of the estimated precision matrices, as well as the consistent
recovery of the edge sets of the various graphical models under consideration based on the structured
sparsity pattern G .

3.1 Estimation Consistency

Let Ni(p−1)K = {(j, k) : j 6= i, k = 1, . . . ,K} be the variable index set for equation (2) with a fixed
node i. Given the structural information G , the grouped variable index set {(j, g) : j 6= i, g ∈ G ij}
defines a partition of Ni(p−1)K . Denote by Gi the cardinality of the set {(j, g) : j 6= i, g ∈ G ij}.
Then 1 ≤ Gi ≤ (p− 1)K. Let J(Θ0,i) = {(j, g) : j 6= i, g ∈ G ij ,θ

[g]
0,ij 6= 0} be the set of nonzero

groups in the i-th regression. We assume an overall sparsity at the group level, that is, the size of
J(Θ0,i) is si << Gi. Let

G0 = max
i=1,...,p

Gi, s0 = max
i=1,...,p

si, S0 =

p∑
i=1

si,

and also let |g| be the size of the group g with |gmax| = maxg∈G |g|.
Let M(p,K) represent the set of all p × K matrices. For ∆ = (δ1, . . . , δK) ∈ M(p,K) and

a group g ⊂ {1, . . . ,K}, denote by δ[g]
j the vector composed of all δkj for which k ∈ g. Write

J = {J(Θ0,1), . . . , J(Θ0,p)}, the collection of sets of nonzero groups in all p regressions. For any
J ∈ J , denote ∆J the nonzero matrix in M(p,K), which has the same coordinates as ∆ on J and
zero elsewhere. Let Jc denote the complement of the index set J . Write 0 as the zero matrix in
M(p,K). We make the following assumptions.
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(A1) For 0 < s < G0, there exists κ = κ(s) > 0, such that

min
J∈J ,|J |≤s

min
∆∈FJ

∑K
k=1 ‖Xkδk‖2/n
‖∆J‖2F

≥ κ2(s),

where for i satisfying J(Θ0,i) = J , FJ is defined as

FJ = {∆ : ∆ ∈M(p,K)\{0},
∑

(j,g)∈Jc

λgij‖δ
[g]
j ‖ ≤ 3

∑
(j,g)∈J

λgij‖δ
[g]
j ‖}.

(A2) For every k = 1, . . . ,K and i = 1, . . . , p, Var(Xk
i ) = 1. Further, there exist constants c0 and

d0 such that for every k,

0 < 1/c0 ≤ φmin(Σk
0) ≤ φmax(Σk

0) ≤ 1/d0 <∞,

where φmin(Σk
0) and φmax(Σk

0) are the minimum and maximum eigenvalues of the matrix
Σk

0 , respectively.

Assumption (A1) is a generalization of the Restricted Eigenvalue assumption for the Lasso in
Bickel et al. (2009) to the group lasso setting in our problem and requires the super design matrix
diag(X1, . . . ,XK) to be well conditioned over the restricted set of vectors under consideration.
One sufficient condition is that the eigenvalues of the Gram matrix of diag(X1, . . . ,XK) is positive
when restricted to the subset of sparse vectors with cardinality no greater than 2s.

The equal variance requirement in assumption (A2) can be easily achieved by appropriate scal-
ing of the data. The second part of the assumption explicitly excludes singular or nearly singular
covariance matrices and guarantees that Ωk

0 exists for every model k = 1, . . . ,K.
We are now ready to state our first result.

Theorem 1 Consider Ω̂k (k = 1, . . . ,K) defined in (4). Let Assumption (A1) with s = 2s0 and
Assumption (A2) be satisfied. For every regression defined in (2), choose

λgij =
2√
nd0

(√
|gmax|+

π√
2

√
q logG0

)
,

with q > 1. Then, with probability at least 1− 2pG1−q
0 , we have

1

K

K∑
k=1

‖Ω̂k − Ωk
0‖F ≤ O

(√
S0

nK

{√
|gmax|+

π√
2

√
q logG0

})
, (5)

where G0 is the maximum number of groups in all regressions, S0 is the total number of relevant
groups and |gmax| is the maximum group size.

Proof of Theorem 1 is available in Appendix A. Note the rate in (5) improves over estimating
each precision matrix separately, as long as the sparsity pattern G is appropriately specified and
nontrivial, i.e. there exists structural similarity among the considered graphical models. Further,
the proposed procedure obtains a faster convergence rate than that of Guo et al. (2011) in some
scenarios.
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For example, if all K graphs share the same structure, then |gmax| = K and G0 = p− 1. Thus,
JSEM achieves a convergence rate of the order of

O

(√
S0

n

{
1 +

π√
2

√
q log(p− 1)

K

})
. (6)

In contrast, separate estimation of Ωk is known to be of the order of

O

(√∑
k

‖Ωk,−
0 ‖0

log p

nK

)
,

where ‖Ωk,−
0 ‖0 denotes the number of nonzero off-diagonal entries in Ωk

0 and
∑

k is short-hand
notation for

∑K
k=1. The joint estimation method by Guo et al. (2011) has the following convergence

rate

O

(√
(p+m)

log p

nK

)
,

where m = | ∪ {k = 1, . . . ,K : ωk0,ij 6= 0}|. Under correctly specified G , we have S0 = m.
Thus, JSEM has a lower estimation error rate than the joint estimation method of Guo et al. (2011).
JSEM also outperforms separate estimation if S0 � ‖Ωk,−

0 ‖0, where � means that the expressions
on both sides are of the same order. On the other hand, the rate in (6) could be worse if the sparsity
pattern G is highly misspecified such that the number of nonzero parameters S0 >

∑
k ‖Ω

k,−
0 ‖0 ≥

m. The issue of sparsity pattern misspecification is addressed in the next section.

3.2 Graph Selection Consistency

To understand how JSEM performs in selecting the edge sets of the graphical models, it suffices to
focus on each of the group lasso estimation problems (2), as consistent graph selection relies on con-
sistent variable selection in all p regressions. Unlike the sign consistency in the lasso setting (Zhao
and Yu, 2006), variable selection properties with a group lasso penalty are much more complicated
because the latter selects whole groups rather than individual variables (see Basu et al., 2015, and
the discussion therein). The Basu et al. (2015) paper offers a generalization and introduces the no-
tion of direction consistency for the group lasso. Specifically, for a nonzero vector ξ, its direction
vector is defined as D(ξ) = ξ/‖ξ‖ and D(0) = 0. An estimator Θ̂i of (2) is direction consistent at
rate αn if for a sequence of positive real numbers αn → 0,

P(‖D(θ̂
[g]

ij )−D(θ
[g]
0,ij)‖ < αn, ∀ (j, g) ∈ J(Θ0,i); θ̂

[g]

ij = 0, ∀ (j, g) /∈ J(Θ0,i))→ 1,

as n, p→∞. In general, direction consistency does not guarantee sign consistency, especially when
there are multiple members within one group. However, if the group is selected, all the members
within the group are selected, which is sufficient for joint neighborhood selection for each node
and subsequent selection of graphs. Motivated by the above idea, we establish the graph selection
consistency property of JSEM in Theorem 2, which can be conveniently modified to adjust for
the misspecification in the prior information G . Before we present the main result, we need more
notations.

Consider the group lasso estimation problem (2) for node i. For simplicity, we discuss the esti-
mation consistency properties with a common tuning parameter λ for all (j, g). For k = 1, . . . ,K,
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denote Xk
Ik

the n×|Ik| sub-matrix consisting of all relevant variables from the k-th model. In other
words, for all j ∈ Ik, there exists a group g 3 k such that (j, g) ∈ J(Θ0,i). Note the dependency of
each index set Ik on i is made implicit here for notational convenience. Further, let ξk ∈ R|Ik| be
a vector indexed by Ik. The following assumption adapts the Uniform Irrepresentability Condition
(IC) in Basu et al. (2015) to our setting:

(A3) There exists a positive constant η such that for all ξ = ((ξ1)T , . . . , (ξK)T )T ∈ R
∑

k |Ik| with
max
(j,g)
‖ξ[g]

j ‖ ≤ 1 and all (j, g) /∈ J(Θ0,i),

∑
k∈g

[
(Xk

j )
TXk

Ik

{
(Xk

Ik
)TXk

Ik

}−1
ξk
]2

1/2

≤ 1− η. (7)

Note the group level constraint (7) is required to hold for all p regressions and is less stringent than
the IC for the selection consistency of lasso. In general, it is not easy to verify Assumption (A3).
One sufficient condition, as suggested in Zhao and Yu (2006), is that the regression coefficients of
Xk
j on Xk

Ik
(k = 1, . . . ,K) have Euclidean norm less than 1 for all (j, g) /∈ J(Θ0,i).

Theorem 2 Let Assumption (A1) with s = s0, (A2) and (A3) be satisfied. Assume further that the
sparsity pattern G is correctly specified. For every regression defined in (2), choose

λ ≥ max
i,(j,g)/∈J(Θ0,i)

1

η

1√
nd0

(√
|g|+ π√

2

√
q logG0

)
, (8)

αn ≥ max
i,(j,g)∈J(Θ0,i)

1

κ(s0)

1

‖θ[g]
0,ij‖

{
λ

√
s0

κ(s0)
+

1√
nd0

(√
|g|+ π√

2

√
q logG0

)}
, (9)

with q > 1. Then with probability at least 1− 4pG1−q
0 , we have simultaneously for all i

1. θ̂
[g]

ij = 0, for all (j, g) /∈ J(Θ0,i),

2. ‖θ̂[g]

ij − θ
[g]
0,ij‖ < αn‖θ[g]

0,ij‖, and hence ‖D(θ̂
[g]

ij )−D(θ
[g]
0,ij)‖ < 2αn for all (j, g) ∈ J(Θ0,i).

Further, if αn < 1, then

P(Êk = Ek0 ,∀ k = 1, . . . ,K) ≥ 1− 4pG1−q
0 .

where Êk is defined in (3).

Note the choice of λ in (8) is of the same order as the tuning parameter required for estimation
consistency in Theorem 1. With the above choice of λ, αn can be chosen to be of the order of
O(
√
s0(
√
|gmax|+

√
logG0)/

√
n). A proof of Theorem 2 can be found in Appendix B.

Bach (2008) using a strong irrepresentability assumption also establishes group support recov-
ery. In this work, we take a different route, where a similar strong irrepresentability assumption
leads to direction consistency. Then, we leverage the notion of direction consistency to propose
within group thresholding which allows us to handle successfully moderate misspecification of the
group structures, as discussed next. Further, from a technical perspective, we build on the Karush-
Kuhn-Tucker (KKT) conditions inversion scheme introduced in Zhao and Yu (2006), and noting

10
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that the sign(·) function in standard lasso KKT conditions is replaced by the D(·) function in the
group lasso KKT conditions. Therefore, sign consistency has a natural generalized counterpart
when considering optimization over groups.

When G is misspecified, it is possible that not all the members within a group have nonzero
effects. However, the group lasso penalty may fail to exclude members with actual zero effect
within the misspecified group, leading to the recovery of spurious edges. The following result
implies that the property of direction consistency helps identify influential members within a group,
that is, those with noticeable nonzero effects.

Corollary 3 Let Assumption (A1) with s = s0, (A2) and (A3) be satisfied. For every regression
defined in (2), choose λ and αn as in Theorem 2. Define

θ̂k,thrij = θ̂kij1{θ̂kij/‖θ̂
[g]

ij ‖ > 2αn}, ∀ k ∈ g, ∀ (j, g) ∈ J(Θ0,i),

and
Êk,thr = {(i, j) : 1 ≤ i < j ≤ p, θ̂k,thrij 6= 0 OR θ̂k,thrji 6= 0}.

If for all g ∈ G ,min
k∈g

θk0,ij/‖θ
[g]
0,ij‖ > 2αn, then

P(Êk,thr = Ek0 ,∀ k = 1, . . . ,K) ≥ 1− 4pG1−q
0 .

The result in Corollary 3 implies immediately that JSEM with an additional thresholding step

on the estimated direction vectors D(‖θ̂[g]

ij ‖) can be applied to reduce false discoveries and thus
improve selection of the edge sets when the structured pattern G is moderately misspecified (that
is, most of the structural relationships specified in G are reliable). This is illustrated in the third
simulation study of Section 4.

4. Performance Evaluation

We present three simulation studies to evaluate the performance of JSEM. Other methods compared
include the separate estimation method Glasso, where the Graphical lasso by Friedman et al. (2008)
is applied to each graphical model separately, joint estimation by Guo et al. (2011), denoted by
JEM-G, the Group Graphical Lasso denoted by GGL by Danaher et al. (2014), and the structural
pursuit method MGGM by Zhu et al. (2014). Note we choose MGGM over the Fused Graphical
Lasso method (Danaher et al., 2014), as the former has been consistently shown to exhibit better
performance.

The first study considers a single common structure across all graphical models, while the sec-
ond one features a more complex structured sparsity pattern. Our comparisons are based on the
overall performance of different methods in terms of their ROC curves, as well as their finite sam-
ple performance in identifying the corresponding graphical models. For the latter, we use BIC to
select the tuning parameters for all methods; in addition, the maximum likelihood refitting step (4)
is added to all joint estimation methods to ensure fair comparison. We point out that the first study is
favorable to existing joint estimation methods due to high degree of structural similarity, while the
second one with varying degrees of structural similarity is more favorable to the JSEM procedure.
Nevertheless, the results show that JSEM outperforms these competing methods in both settings,
even when the structured pattern is moderately misspecified.
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The third simulation compares JSEM with its thresholded version under misspecified G using
the experimental settings of the first two studies. In this setting, one also needs to select the within
group thresholding αn besides λ. As in previous simulations, we first select λ via BIC without any
thresholding. At the optimal λ, we select αn from the grid of values

αn(c) = c
(
|gmax|+

√
logG0

)/√
n, c ∈ {0.1, 0.2, . . . , 1},

where |gmax| and G0 are defined by the input sparsity pattern. The optimal α∗n is selected as the one
that minimizes the corresponding BIC.

We refer readers to Appendix C for additional simulation results, including comparison of all
joint estimation methods with and without maximum likelihood refitting step (4), and large p set-
tings.

4.1 Simulation Study 1

In our first simulation, we set K = 5, with each graphical model being of size p = 100. The
structured pattern is constructed as follows: we first generate a scale-free network with edge set E0

as the common structure shared across all graphs, shown in the left panel of Figure 2. To generate
the edge set Ek, we randomly select a pair of (i, j), i < j such that (i, j) /∈ E0 and add it to Ek.
This procedure was repeated ρ|E0| times for each k, where ρ is a positive number corresponding
to the ratio of individual edges to common ones. In this example, we set ρ = 0.1 to allow high
structural similarity across graphs. Thus, all graphical models have the same degree of sparsity,
with 108 or 2.2% of all possible edges present. Note that due to the sparse structure of each graph,
the proportion of shared non-edges (common zeros in the adjacency matrices) among all models is
98%.

Given the edge set Ek, we then constructed the inverse covariance matrix with the nonzero
off-diagonal entries in Ωk being uniformly generated from the [−1,−0.5] ∪ [0.5, 1] interval. The
positive definiteness of Ωk is guaranteed by setting the diagonal elements to be |φmin(Ωk)| + 0.1.
The covariance matrix Σk is then determined by

Σk
ij = (Ωk)−1

ij /
√

(Ωk)−1
ii (Ωk)−1

jj .

By construction, each Σk corresponds to the correlation matrix for the k-th graphical model. The
sparsity pattern supplied for JSEM is G = {1, . . . ,K}, that is assuming all graphical models share
the same structure. Note by setting the parameter ρ = 0.1, we have created a situation where about
10% of the information in G is misspecified for JSEM. This is of interest for us to see whether
JSEM is robust to pattern misspecification.

To compare the overall performance of all methods, we generated nk = 50 samples from each
k = 1, . . . ,K and computed the average false positive and true positive rates of the estimated
precision matrices over a fine grid of tuning parameters from 20 replications. The resulting ROC
curves are shown in the right panel of Figure 2. Since both GGL and MGGM require two tuning
parameters, one for controlling the sparsity of individual graph and the other for controlling the
similarity across all graphs, we computed the ROC curves over a fine grid of the sparsity parameter
while fixing the similarity regularization at four different levels (from low to high similarity), and
plotted the one that has the largest value of area under the curve (AUC). The graph U supplied for
MGGM is a complete graph such that each pair of graphical models is included in the fused lasso

12
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Figure 2: Simulation study 1: left panel shows the image plot of the adjacency matrix corresponding

to the shared structure across all graphs. Each black cell indicates presence of an edge.
The right panel shows the ROC curves for sample size nk = 50: Glasso (dotted in black),
JEM-G (dotdash in blue), GGL (solid in red), MGGM (dashed in purple), JSEM (long-
dash in green).

penalty. In this example, it turns out that GGL performs the best when there is only regularization
on the similarity, i.e. a group lasso penalty on the same entry across allK precision matrices, which
we expect to exhibit a similar performance to the proposed JSEM. In the right panel of Figure 2, the
ROC curve of GGL falls slightly below that of JSEM. In comparison, MGGM does not perform as
well despite the flexible penalty. The best curve we got from MGGM shows some advantage over
the separate estimation Glasso, but mostly falls below curves from other joint estimation methods.
JEM-G performs well and is very competitive compared to GGL and JSEM for very low false
positive and high true positive rates, but starts falling behind when the false positive rate is greater
than 5%. In this example, JSEM performs the best with the highest ROC curve throughout the
domain.

Next, we computed the estimators from different methods with nk = 50 samples for each
k = 1, . . . ,K, using the tuning parameters selected by BIC. Results are summarized in Table 1,
which compares the estimated precision matrices with the population version in the true model
based on 50 replications under falsely discovered edges (FP), falsely deleted edges (FN), structural
hamming distance (SHD), F1 score (F1) and Frobenius norm loss (FL). The F1 score (based on the
effectiveness measure in Rijsbergen, 1979) measures the accuracy of a test by summarizing infor-
mation from both FP and FN, where it reaches its best value at 1 and worst at 0. The results indicate
that although GGL is good at controlling false positives, it tends to produce a high number of false
negatives. The performance of MGGM is quite the opposite, with relatively small false negatives,
but a huge number of false positive edges. In comparison, the proposed method JSEM achieves
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Method FP FN SHD F1 FL
Glasso 35(6) 81(2) 116(5) 0.32(0.02) 0.73(< 0.01)
JEM-G 22(4) 40(4) 62(6) 0.69(0.03) 0.28(0.02)
GGL 17(6) 73(2) 90(6) 0.44(0.03) 0.29(0.02)
MGGM 286(13) 49(3) 335(13) 0.26(0.01) 0.64(0.02)
JSEM 19(4) 35(3) 54(6) 0.73(0.03) 0.25(0.02)

Table 1: Performance of different regularization methods for estimating graphical models in Simu-
lation Study 1: average FP, FN, SHD, F1 and FL (SE) for sample size nk = 50. The best
cases are highlighted in bold.

a balance and obtains the highest F1 score, as well as the lowest Frobenius norm loss. JEM-G
performs slightly worse, but still well above the other three methods.

4.2 Simulation Study 2

In our second study, we consider a more structured pattern with K = 10 graphs. Each graphical
model consists of p = 50 variables. Figure 3 shows the heat maps of the 10 adjacency matrices. This
structured pattern is constructed as follows: we first generate the adjacency matrices corresponding
to five distinct p-dimensional scale-free networks, so that the adjacency matrices in each column
of the plot are the same. Next, we replace the connectivity structure of the bottom right diagonal
block of size p/2 by p/2 in each adjacency matrix with that of another two distinct p/2-dimensional
scale-free networks, so that graphical models in each column exhibit the same connectivity pattern
except in the bottom right diagonal block of their adjacency matrices. Note that by replacing the
connectivity structure among the second half of the nodes, the relationships between the first half
and the second half of the nodes are also altered. In summary, this structured pattern illustrates how
different subsets of the edge sets across multiple graphical models can be similar, as well as exhibit
differences in their topologies. To the best of our knowledge, such complex relationships have not
been studied in the literature. In this setting, the proportion of shared non-edges (common zeros in
the precision matrices) among all graphical models is about 60%.

Given the adjacency matrix or equivalently the edge set Ek, we generate the covariance and
inverse covariance matrices in the same way as in the first simulation study. The input sparsity
pattern G supplied for JSEM and the graph U required in MGGM are defined according to the
pattern in Figure 3. We also study the effect of misspecification in G by varying ρ = 0, 0.2, 0.4, 0.6,
each corresponding to having only (1− ρ) ∗ 100% of the information in G being correct for JSEM.

At each level of pattern misspecification, we generated nk = 100 independent samples for each
k = 1, . . . ,K and compared the ROC curves from different methods based on 20 replications in
Figure 4. Again, the ROC curves for GGL and MGGM were optimized first with respect to the
similarity regularization in terms of AUC. When ρ = 0, the results show a superior performance
of JSEM, since it effectively incorporates available prior information across the various graphical
models. JEM-G also yields a reasonably high ROC curve by taking advantage of the shared non-
edges among all models. The performance of MGGM is comparable to that of JEM-G and much
better than that of GGL. This is not surprising since MGGM benefits from knowing which pairs of
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1 3 5 7 9

2 4 6 8 10

Figure 3: Simulation study 2: image plots of the adjacency matrices from all graphical models.
Graphs in the same row share the same connectivity pattern at the bottom right block,
whereas graphs in the same column share the same pattern at remaining locations.

graphical models to group. As ρ increases (0 < ρ ≤ 0.4), JSEM still performs the best despite the
incorrectly specified G , while other methods perform not much better than the separate estimation
method Glasso. When ρ = 0.6, JSEM starts suffering from the large amount of pattern misspecifi-
cation as well and performing not much better than separate estimation. Note at such high ρ values,
the assumption of the presence of any related structures across graphical models becomes tenuous
and therefore one is better off employing a separate estimation method for each graph.

Next, we examined the finite sample performance of different methods in identifying the true
graphs and estimating the precision matrices at the optimal choice of tuning parameters. Table 2
shows the deviance measures between the estimated and the true precision matrices based on 50
replications for varying levels of pattern misspecification. For ρ ≤ 0.4, JSEM achieves a good
balance between FP and FN, and yields the highest F1 score and lowest Frobenius norm loss. JEM-
G is also very competitive in controlling false positive edges and comes next in overall performance.
MGGM benefits from knowing the grouping structures and has comparable performance to JEM-G.
In all cases, GGL achieves low FN, but very high FP, thus resulting in low F1 scores. When ρ = 0.6,
the advantage of using a joint estimation method begins to diminish due to the high heterogeneity
and separate estimation is recommended.

4.3 Simulation Study 3

Finally, we illustrate how direction consistency helps improve the estimation of graphical models
using the previous two experimental settings. Table 3 presents the performance of thresholded
JSEM when G is moderately misspecified with individual to common ratio ρ = 0.3, based on 50
replications. Note that we used a larger sample size nk = 200 in both settings to ensure that the
Uniform IC required for direction consistency holds. The advantage of thresholding within groups
is obvious in both settings, where the thresholded JSEM significantly reduces the number of false
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Figure 4: Simulation study 2: ROC curves for sample size nk = 100: Glasso (dotted in black),
JEM-G (dotdash in blue), GGL (solid in red), MGGM (dashed in purple), JSEM (long-
dash in green). The misspecification ratio ρ varies from (left to right): 0, 0.2 (top row)
and 0.4, 0.6 (bottom row).

positive edges with only a small loss in the presence of false negative edges. One may notice the
slight increase in Frobenius norm loss for thresholded JSEM, which is likely due to the increased
presence of false negative edges. Nevertheless, the thresholded version of JSEM obtains higher F1

scores, indicating an overall improvement in the structural estimation of all graphs.
We point out that the JSEM with thresholding procedure is most effective when ρ is moderate to

small, such as ρ < 0.5 in this example. In other words, one believes most of the structural relation-
ships are fairly reliable. If this is not the case, the numerical work presented strongly suggests that
no joint estimation method works well, since the fundamental assumption of structural similarity
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ρ Method FP FN SHD F1 FL

0

Glasso 154(4) 38(1) 192(4) 0.51(0.01) 0.60(0.005)
JEM-G 86(3) 36(2) 122(3) 0.62(0.01) 0.31(0.01)
GGL 144(3) 39(1) 184(4) 0.52(0.01) 0.37(0.01)
MGGM 30(2) 67(1) 97(2) 0.59(0.01) 0.36(0.01)
JSEM 21(2) 42(2) 63(3) 0.75(0.01) 0.28(0.01)

0.2

Glasso 164(3) 47(1) 211(4) 0.53(0.01) 0.59(0.005)
JEM-G 92(3) 57(2) 149(3) 0.59(0.01) 0.35(0.01)
GGL 155(3) 48(1) 203(3) 0.53(0.01) 0.37(0.01)
MGGM 94(3) 64(1) 158(4) 0.56(0.01) 0.37(0.01)
JSEM 32(3) 64(2) 96(3) 0.67(0.01) 0.32(0.01)

0.4

Glasso 159(3) 59(1) 218(4) 0.55(0.01) 0.57(0.005)
JEM-G 100(3) 77(2) 177(3) 0.56(0.01) 0.37(0.01)
GGL 149(3) 61(2) 210(4) 0.55(0.01) 0.37(0.01)
MGGM 119(3) 65(1) 184(3) 0.58(0.01) 0.37(0.01)
JSEM 49(3) 84(2) 132(3) 0.62(0.01) 0.36(0.01)

0.6

Glasso 176(4) 73(2) 249(4) 0.54(0.01) 0.55(0.01)
JEM-G 94(3) 109(2) 203(3) 0.52(0.01) 0.39(0.01)
GGL 165(4) 76(2) 241(4) 0.54(0.01) 0.39(0.01)
MGGM 109(3) 95(2) 204(4) 0.55(0.01) 0.39(0.01)
JSEM 50(3) 123(2) 173(4) 0.52(0.01) 0.38(0.01)

Table 2: Performance of different regularization methods for estimating graphical models in Simu-
lation Study 2: average FP, FN, SHD, F1 and FL (SE) for sample size nk = 100. The best
cases are highlighted in bold.

Design Method FP FN SHD F1 FL
K = 5, p = 100,
G = {1, 2, 3, 4, 5}

JSEM 84(6) 12(1) 96(6) 0.71(0.01) 0.16(0.01)
ThJSEM 29(4) 17(1) 46(4) 0.83(0.01) 0.16(0.01)

K = 10, p = 40,
G as in Figure 3

JSEM 32(2) 5(0.7) 37(2) 0.78(0.01) 0.17(0.01)
ThJSEM 20(2) 8(0.7) 28(2) 0.82(0.01) 0.19(0.01)

Table 3: Performance of JSEM and thresholded JSEM with misspecified groups (ρ = 0.3): av-
erage FP, FN, SHD, F1 and FL (SE) for sample size nk = 200. The better cases are
highlighted in bold.

among multiple models is violated. Instead, separate estimation is recommended for handling high
heterogeneity among multiple graphical models.
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5. Applications

To illustrate the proposed joint estimation method in inferring real-world networks, we applied
JSEM to a climate data set to study relationships between climate defining variables at multiple
locations in North America, as well as a breast cancer gene expression data extracted from The
Cancer Genome Atlas project (TCGA, 2012).

5.1 Application to Climate Modeling

Recent assessments from the Intergovernmental Panel on Climate Change (IPCC, Stocker et al.,
2013) indicate multiple lines of evidence for climate change in the past century and these changes
have caused significant impacts on natural and human systems. One common approach towards
understanding the climate system has been attribution studies of detected changes to internal and
external forcing mechanisms (such as solar radiation, greenhouse gases, etc.) using simulated cli-
mate models. Lozano et al. (2009) used spatial-temporal modeling to study the attribution of climate
defining mechanisms from observed data. In this work, we provide an alternative to learning the
complex interactions among climate defining factors exhibited across different climate zones based
on observed data.

The data used in this study are monthly measurements from January 2001 to June 2005 on 16
variables including mean temperature (TMP), diurnal temperature range (DTR), maximum and min-
imum temperature (TMX, TMN), precipitation (PRE), vapor pressure (VAP), cloud cover (CLD),
rain days (WET), potential evapotranspiration (PET), frost days (FRS), greenhouse gases (carbon
dioxide (CO2), carbon monoxide (CO), methane (CH4), hydrogen (H2)), aerosols (AER) and solar
radiation (SOL) from CRU (http://www.cru.uea.ac.uk/cru/data), NOAA (http://
www.esrl.noaa.gov/gmd/dv/ftpdata.html), NASA (http://disc.sci.gsfc.nasa.
gov/aerosols) and NCDC (ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/).
The data are organized as a 2.5 degree latitude by 2.5 degree longitude grid across North Amer-
ica. To avoid complications from any seasonality or autocorrelation of the data, we aggregated the
monthly time series into bins of 3-month intervals and took first differences of the quarterly data.
The data after differencing were further normalized. Details on the pre-processing steps are in-
cluded in Appendix D. Next, we randomly selected K = 27 locations spanning all types of climate
from the 2.5 by 2.5 degree grid of North America (see Figure 5). This gives us an n × p matrix
at each of the 27 locations, corresponding to n = 17 observations for the p = 16 climate defining
variables. At each location, the conditional dependency network is of dimension p × p, which has
16× 15/2 = 120 edges to be inferred.

Our goal is to infer the conditional dependency networks for all locations simultaneously based
on available spatial information, obtained from the classification of climate zones in Peel et al.
(2007). Specifically, we assume that AER and SOL have one common connectivity pattern with
other variables in the geographical south of North America and another common pattern in the north.
The definition of the south and north is given in Figure 5. Variables on greenhouse gases (CO2, CO,
CH4 and H2) are assumed to interact with other variables (except AER and SOL) in the same
fashion within each of the four climate groups, that is Mid-latitude Desert, Semiarid Steppe, Humid
Subtropical and Humid Continental. The connectivity patterns among all remaining variables are
assumed to be the same within each of the six distinct climate zones in Figure 5.

We used BIC on the normalized data to select the tuning parameter λ for the proposed JSEM. At
the optimal λ, we applied our method coupled with complementary pairs stability selection (Shah
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Figure 5: The selected 27 locations based on climate classification. The solid line separates the
south and north of North America and corresponds to latitude 39 N.

and Samworth, 2013) to identify the interaction networks at the 27 locations. To perform stability
selection, we ran our method 50 times on two randomly drawn complementary pairs of sizes 8 and
9, and kept only edges that are selected over 70% of the time.

Due to space limitation, we present in Figure 6 the estimated networks at the six distinct climate
zones. Readers are referred to Appendix D for the complete picture of the 27 networks from all the
27 locations under study, as well as more detailed comparisons. Although we do not impose the
assumption on sharing of a single common structure across all locations, there are common edges
(solid) identified for all climate zones, reflecting key features of climate defining regardless of ge-
ographical location. Such relationships are consistent with how the corresponding climate defining
variables are defined, as well as how the data are collected (Harris et al., 2014). The Mid-latitude
Desert and Semiarid Steppe climate zones share the edge between DTR and CLD, indicating that
they are correlated conditional on all other variables. Similar relationships have also been found
over drier regions in Zhou et al. (2009). In addition, one can see that the variable FRS interacts
mainly with PET at Mid-latitude Desert and Semiarid Steppe climates, whereas it is partially corre-
lated with both PRE and TMN (or TMX) at Continental climates. This can be explained from the
distinction between these climate zones. At Humid Continental climate, precipitation is relatively
well distributed year-round in most areas and snowfall occurs in all areas. It is thus not difficult to
see why precipitation (PRE) and temperature related variables correlate with the number of frost
days (FRS). Further, a primary criterion of an area characterized as Mid-latitude Desert or Semiarid
Steppe is that it receives precipitation below potential evapotranspiration (PET), which possibly ex-
plains why FRS is partially correlated only with PET for Mid-latitude Desert and Semiarid Steppe
climate. Finally, we point out that the inferred networks at neighboring climate zones are more
similar, such as Semiarid Steppe (hot arid and cold arid), or Humid Continental (hot summer and
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Figure 6: Estimated climate networks at the six distinct climate zones using JSEM, with edges
shared across all locations blue solid and differential edges red dashed.

warm summer), whereas those with dramatically different climate show significantly different con-
nectivity patterns. These common and individual interactions can prove critical in understanding
the mechanisms of climate defining, and facilitate decision making in maintaining the best environ-
mental results.

5.2 Application to Breast Cancer

Breast cancer is the most common cancer in women worldwide, with nearly 1.7 million new cases
diagnosed in 2012 (second most common cancer overall). This represents about 12% of all new can-
cer cases and 25% of all cancers in women (Ferlay et al., 2013). Breast cancer is hormone related
and this leads to a basic classification of cancer cells. Specifically, a cancer is called estrogen-
receptor-positive (or ER+) if it has receptors for estrogen, and hence the cells receive signals from
estrogen that could promote their growth. It is estimated that about 80% of all breast cancer cases
are ER+ and they are more likely to respond to hormone therapy. Further, ER+ status is associated
with better survival rates, especially if the cancer is diagnosed early. On the other hand, the ER-
status lacks the estrogen receptor and in general exhibits poorer survival rates. Note that the pres-
ence/absence of other hormone receptors (progesterone and HER2) also play an important role in
breast cancer tumor classification, therapeutic strategies and survival rates.

The breast cancer data set (TCGA, 2012) contains RNA-seq measurements for 17296 genes
from 1033 breast cancer specimens, including ER+, ER- and other unevaluated cases. Due to the
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overall small sample size, we first reduced the number of variables by focusing on a subset of the
genes that are present in the 44 KEGG pathways in Table 4. These pathways correspond to the major
signaling and biochemical ones that have been reported in the literature of playing a significant role
in all cancer types. This leaves for further consideration 800 genes with 403 samples from the ER+
and 117 from the ER- classes.

The structural similarity between the networks for ER+ and ER- status was defined based on the
third column in Table 4, which indicates whether the pathway is significantly enriched when testing
ER+ vs ER- status via NetGSA (Ma et al., 2016), and complemented through literature searches. If
one pathway is not significantly enriched, then the genes belonging to the pathway are considered
to share a common structure under both ER+ and ER- status. However, due to overlaps amongst
pathways (since some of their members are assigned to multiple ones in the KEGG database), only
genes that did not belong to any of the differential pathways were used to define the common
structure. The remaining genes are assumed to have distinct structures under the two conditions.

We then used BIC on the normalized data to select the tuning parameter λ for the proposed
JSEM. At the optimal λ, we applied our method coupled with complementary pairs stability selec-
tion (Shah and Samworth, 2013) to identify the interaction networks for the ER+ and ER- classes,
respectively. Due to the large number of variables, visualization of the estimated networks at the in-
dividual gene level is challenging. Instead, we examine the interactions among pathways in Figure 7
to gain insight into their co-regulation behavior. The weighted pathway level network is defined as
follows. Let each node in the network represent one pathway, with size proportional to the size of
the corresponding pathway. A weighted edge between two pathways P1 and P2 is defined as the
number of nonzero partial correlations between genes in P1 and those in P2 (normalized by the sizes
of the two pathways). Links visualized in Figure 7 are the top 5% of the weighted edges, where
ranking is based on edge weights. Note pathways that are isolated from all others were removed.

The first thing to note is that structural information provided enables us to estimate a much more
dense graph than either separate estimation or an agnostic method like JEM-G (see Figure 12 in Ap-
pendix D), which in turn aids biological interpretation. We focus next on the interactions between
pathways, as shown in Figure 7. The central role of known cancer related pathways—TGF-β, p53,
MAPK and hedgehog—is apparent. Further, we see high degree of interconnections between sig-
naling and biochemical pathways including glycolysis gluconeogenesis, pyrimidine, cysteine and
methionine, and tryptophan, which is expected due to the impact of energy metabolism in tumor
growth and progression. One surprising finding is that the p53 pathway is connected only in the
ER+ class, but we suspect that this may be the case due to the big discrepancy in terms of available
samples for the ER+ and ER- classes and the large number of genes present. In summary, the pro-
posed method captures established cross-talk patterns between various signaling and biochemical
pathways, which is not the case with competing methods or with separate estimation.

6. Discussion

This work introduces a flexible joint structural estimation method (JSEM) that incorporates a pri-
ori known structural relationships between multiple graphical models. The proposed method works
well in situations where there is a large number of graphical models, but external similarity informa-
tion is available only for sub-components of the models. In practice, if not all entry-wise structural
relationships across multiple graphical models are available, it is recommended to add constraints
at mainly edge pairs that are likely to share the same structures instead of providing a highly mis-
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Vertex id Vertex names KEGG names Status
1 glycolysis gluconeogenesis glycolysis gluconeogenesis TRUE
2 citrate cycle tca cycle citrate cycle tca cycle FALSE
3 pentose phosphate pentose phosphate pathway TRUE
4 fructose and mannose fructose and mannose metabolism TRUE
5 galactose galactose metabolism TRUE
6 fatty acid fatty acid metabolism FALSE
7 oxidative phosphorylation oxidative phosphorylation FALSE
8 purine purine metabolism TRUE
9 pyrimidine pyrimidine metabolism TRUE

10 glycine serine and threonine glycine serine and threonine metabolism FALSE
11 cysteine and methionine cysteine and methionine metabolism TRUE
12 valine leucine and isoleucine valine leucine and isoleucine degradation TRUE
13 lysine lysine degradation FALSE
14 arginine and proline arginine and proline metabolism FALSE
15 tryptophan tryptophan metabolism FALSE
16 beta alanine beta alanine metabolism TRUE
17 glutathione glutathione metabolism TRUE
18 starch and sucrose starch and sucrose metabolism TRUE
19 amino sugar and nucleotide sugar amino sugar and nucleotide sugar metabolism FALSE
20 ppar ppar signaling pathway TRUE
21 mapk mapk signaling pathway FALSE
22 erbb erbb signaling pathway TRUE
23 calcium calcium signaling pathway FALSE
24 chemokine chemokine signaling pathway TRUE
25 phosphatidylinositol phosphatidylinositol signaling system FALSE
26 cell cycle cell cycle TRUE
27 p53 p53 signaling pathway TRUE
28 mtor mtor signaling pathway FALSE
29 wnt wnt signaling pathway FALSE
30 notch notch signaling pathway FALSE
31 hedgehog hedgehog signaling pathway TRUE
32 tgf beta tgf beta signaling pathway TRUE
33 vegf vegf signaling pathway FALSE
34 toll like toll like receptor signaling pathway TRUE
35 nod like nod like receptor signaling pathway TRUE
36 rig i like rig i like receptor signaling pathway FALSE
37 jak stat jak stat signaling pathway TRUE
38 t cell t cell receptor signaling pathway FALSE
39 b cell b cell receptor signaling pathway FALSE
40 fc epsilon ri fc epsilon ri signaling pathway TRUE
41 neurotrophin neurotrophin signaling pathway FALSE
42 insulin insulin signaling pathway FALSE
43 gnrh gnrh signaling pathway TRUE
44 adipocytokine adipocytokine signaling pathway TRUE

Table 4: List of simplified vertex (pathway) names, their matching names in KEGG and whether
the corresponing pathway is used to define structural similarity
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Figure 7: Estimated pathway networks for the ER+ and ER- classes using JSEM, with edges shared
across all locations blue solid and differential edges red dashed (ER+) / green dashed
(ER-).

specified structured sparsity pattern. On the other hand, if more structural information is available,
one may generalize the group lasso penalty to incorporate additional structural constraints.

The theoretical guarantees of JSEM rely on two important, but standard in the literature, as-
sumptions: the restricted eigenvalue assumption (A1) and the uniform IC assumption in (A3). In
practice, it might be difficult to verify whether these assumptions are fulfilled, especially the more
stringent assumption (A3). For the latter condition, Meinshausen and Yu (2009) observe that the
irrepresentability condition (a variant of A3) may be violated in practical settings in the presence of
highly correlated variables; nevertheless, the lasso estimates are still `2 consistent, under (A1).
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Appendix A. Proof of Theorem 1

To prove the rate of convergence in Theorem 1, we look at three key steps: nodewise regression
in subsection A.1, selecting the edge set in A.2 and maximum likelihood refitting in A.3. More
information can be found in Appendix E. When it is clear, we shall use

∑
k as a short notation for∑K

k=1.

A.1 Regression

For j 6= i, g ∈ G ij , k ∈ g, let εki = Xk
i −

∑
j 6=i θ

k
0,ijX

k
j . Let 〈a, b〉 represent the inner product

between two vectors a and b. Denote ζkij = 〈εki ,Xk
j 〉/n and ζ[g]

ij = (ζkij)k∈g ∈ R|g|. Consider the

random event A =
⋂

i,j 6=i,g
Agij , where Agij = {2‖ζ[g]

ij ‖ ≤ λ
g
ij}. By Lemma E.2, if we choose λgij as

λgij ≥ max
k∈g

2√
nωk0,ii

(√
|g|+ π√

2

√
q logG0

)
(10)

with q > 1, then P(A) ≥ 1 − 2pG1−q
0 . We first present the following proposition that establishes

oracle bounds for Θ̂i −Θ0,i under the chosen λgij .

Proposition A.1 For i = 1, . . . , p, consider the problem (2) and choose λgij as in (10). Let Θ̂i be
the solution to problem (2). If Assumption (A1) holds with κ2 = κ2(s0), then for any solution Θ̂i of
problem (2), we have on the event A∑

j 6=i,g∈G ij

‖θ̂[g]

ij − θ
[g]
0,ij‖ ≤

16

κ2λmin

∑
(j,g)∈J(Θ0,i)

(λgij)
2, (11)

M(Θ̂i) ≤
64φmax

κ2λ2
min

∑
(j,g)∈J(Θ0,i)

(λgij)
2, (12)

where λmin = min
i,j 6=i,g∈G ij

λgij ,M(Θ̂i) = |J(Θ̂i)| and φmax is the maximal eigenvalue of (Xk)TXk/n

for all k = 1, · · · ,K. If, in addition, Assumption (A1) holds with κ2(2s0), then for any solution Θ̂i

of problem (2) we have that

‖Θ̂i −Θ0,i‖F ≤
4
√

10

κ2(2s0)

∑
(j,g)∈J(Θ0,i)

(λgij)
2

λmin
√
si

. (13)

By Assumption (A2), ωk0,ii ≥ φmin(Ωk
0) = φ−1

max(Σk
0) ≥ d0 for all i, k. Thus, (10) implies that

we can choose λgij = λmax as

λmax =
2√
nd0

(√
|gmax|+

π√
2

√
q logG0

)
, (14)
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with q > 1 for all 3-tuples (i, j, g). Then we can rewrite the oracle inequalities in (12) and (13) as

M(Θ̂i) ≤
64φmax

κ2
si, (15)

‖Θ̂i −Θ0,i‖F ≤
8
√

10

κ2(2s0)
√
d0

(√
|gmax|+

π√
2

√
q logG0

)√
si
n
. (16)

Detailed proof of Proposition A.1 follows similarly to that of Theorem 3.1 in Lounici et al. (2011)
and can be found in Appendix E.

A.2 Selecting Edge Set

Given the estimates Θ̂i (i = 1, . . . , p), define Êk as in (3) the estimated set of edges in graph
k = 1, . . . ,K. For every k, let Ω̃k = diag(Ωk

0) + Ωk
0,Ek

0∩Êk
and Σ̃k = (Ω̃k)−1. Let

Cbias =
8
√

10c0

κ2(2s0)
√
d0
.

The following corollary is an immediate result of (15) and (16).

Corollary A.1 Consider Êk (k = 1, . . . ,K) selected in (3). Suppose all conditions in Theorem 1
are satisfied. Choose λgij = λmax as defined in (14) with q > 1. Then we have on the event A

|Êk| ≤ 64φmax

κ2(s0)
S0, k = 1, . . . ,K, (17)

and

1

K

∑
k

‖Ω̃k − Ωk
0‖F ≤

1√
K

{∑
k

‖Ω̃k − Ωk
0‖2F

}1/2
≤ Cbias

√
S0

nK

(√
|gmax|+

π√
2

√
q logG0

)
,

(18)
where G0 is the maximum number of groups in all p regressions, S0 is the total number of relevant
groups, and |gmax| is the maximum group size.

The bound in (17) says that the cardinality of the estimated set of edges is at most of the order
of S0 and proves essential in controlling the error rate of the maximum likelihood estimate Ω̂k in
the refitting step. Further, the second inequality in (18) implies{∑

k

‖Ω̃k − Ωk
0‖2F

}1/2
≤ τ1d0,

provided the sample size n satisfies for 0 < τ1 < 1,

n ≥ S0

(√
|gmax|+

π√
2

√
q logG0

)2(Cbias

τ1d0

)2

.

It follows immediately that on the event A, we can bound the spectrum of Ω̃k (k = 1, . . . ,K) as
follows. For a symmetric matrix A, let ‖A‖ represent the spectral norm of A, which is equal to
φmax(A). By definition,

φmin(Ω̃k) = min
v:vT v=1

vT Ω̃kv = min
v:vT v=1

{vTΩk
0v + vT (Ω̃k − Ωk

0)v} ≥ φmin(Ωk
0)− ‖Ω̃k − Ωk

0‖.
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Since φmin(Ωk
0) ≥ d0 by Assumption (A2), we have

φmin(Ω̃k) ≥ φmin(Ωk
0)− ‖Ω̃k − Ωk

0‖ ≥ φmin(Ωk
0)− ‖Ω̃k − Ωk

0‖F

≥ φmin(Ωk
0)−

{∑
k

‖Ω̃k − Ωk
0‖2F

}1/2
≥ (1− τ1)d0 > 0, (19)

In addition, we have an upper bound for the maximum eigenvalue of Ω̃k,

φmax(Ω̃k) ≤ φmax(Ωk
0) + ‖Ω̃k − Ωk

0‖ ≤ φmax(Ωk
0) + ‖Ω̃k − Ωk

0‖F

≤ φmax(Ωk
0) +

{∑
k

‖Ω̃k − Ωk
0‖2F

}1/2
≤ c0 + τ1d0 <∞. (20)

A.3 Refitting

Let Ω̂k (k = 1, . . . ,K) be defined in (4) and

rn = Cbias

√
S0

n

(√
|gmax|+

π√
2

√
q logG0

)
. (21)

Proof [of Theorem 1.] In view of Corollary A.1, it suffices to show that∑
k

‖Ω̂k − Ω̃k‖2F ≤ O
(
r2
n

)
,

since by Cauchy-Schwarz inequality,

1

K

∑
k

‖Ω̂k − Ω̃k‖F ≤
1√
K

{∑
k

‖Ω̂k − Ω̃k‖2F
}1/2

,

and by triangle inequality,

1

K

∑
k

‖Ω̂k − Ωk
0‖F ≤

1

K

∑
k

‖Ω̂k − Ω̃k‖F +
1

K

∑
k

‖Ω̃k − Ωk
0‖F .

For k = 1, . . . ,K, let ∆k = Ωk − Ω̃k ∈M(p, p) and ∆̂k = Ω̂k − Ω̃k. Let

Q(Ω) =
∑
k

{
tr(Σ̂kΩk)− log det(Ωk)− tr(Σ̂kΩ̃k) + log det(Ω̃k)

}
.

Since (Ω̂k)Kk=1 minimizes Q(Ω), (∆̂k)Kk=1 minimizes G(∆) = Q(Ω̃ + ∆). Recall the definition
S+
E = {Γ ∈ Rp×p : Γ � 0 and Γij = 0, for all (i, j) /∈ E where i 6= j}. For k = 1, . . . ,K, define

a sequence of convex sets
Un(Ω̃k) = {Γ− Ω̃k|Γ ∈ S+

Êk
}.

The main idea of the proof is as follows. For a sufficiently large M > 0, consider the set

Tn = {(∆1, . . . ,∆K) : ∆k ∈ Un(Ω̃k),
∑
k

‖∆k‖2F = Mr2
n}.
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Write 0p×p the zero matrix in M(p, p). It is clear that G(∆) is a convex function and G(∆̂) ≤
G(0p×p) = 0. Thus if we can show inf∆∈Tn G(∆) > 0, the minimizer ∆̂ must be inside the
ball defined by Tn. That is

∑
k‖∆̂k‖2F ≤ Mr2

n. To see this, note that the convexity of Q(Ω)

implies that inf∆∈Tn Q(Ω̃ + ∆) > Q(Ω̃) = 0. There exists therefore a local minimizer in the ball
{Ω̃k + ∆k :

∑
k‖∆k‖2F ≤Mr2

n}, or equivalently,
∑

k‖∆̂k‖2F ≤Mr2
n.

In the remainder of the proof, we focus on

G(∆) =
∑
k

{
tr(Σ̂k∆k)− log det(Ω̃k + ∆k) + log det(Ω̃k)

}
.

Applying Taylor expansion to the logarithm terms in the above equation, we have

log det(Ω̃k + ∆k)− log det(Ω̃k)

=tr(Σ̃k∆k)− vec(∆k)T
{∫ 1

0
(1− t)(Ω̃k + t∆k)−1 ⊗ (Ω̃k + t∆k)−1dt

}
vec(∆k),

where ⊗ is the Kronecker product, and vec(∆k) is ∆k vectorized to match the dimensions of the
Kronecker product. Therefore, we can rewrite G(∆) = L1 − L2 + L3, with

L1 =
∑
k

tr
{

(Σ̂k − Σk
0)∆k

}
,

L2 =
∑
k

tr
{

(Σ̃k − Σk
0)∆k

}
,

L3 =
∑
k

vec(∆k)T
{∫ 1

0
(1− t)(Ω̃k + t∆k)−1 ⊗ (Ω̃k + t∆k)−1dt

}
vec(∆k).

Next we bound each term separately.
Recall for every k, Σk

0 and Σ̂k represent the correlation and the sample correlation matrix,
respectively. By Lemma 14 of Zhou et al. (2011) [see details on page 3003],

P
{
|σ̂kij − σk0,ij | ≥ t

}
≤ exp

(
− 3nt2

10{1 + (σk0,ij)
2}

)
≤ exp

(
− 3nt2

20

)
, (22)

for 0 ≤ t ≤ {1 + (σk0,ij)
2}/2. Then the union sum inequality and (22) imply that, with probability

tending to 1,

max
k,i6=j

|σ̂kij − σk0,ij | ≤ c1

√
1

nK

(√
|gmax|+

π√
2

√
q logG0

)
,

provided that the sample size satisfies

n ≥ 4c2
1

K

(√
|gmax|+

π√
2

√
q logG0

)2

,

where c1 > 0 is a constant. Write ∆k = ∆k,+ + ∆k,− such that ∆k,+ = diag(∆k) and ∆k,−

consists of the off-diagonal entries of ∆k. Then

|L1| ≤
∑
k

∑
i 6=j
|σ̂kij − σk0,ij ||∆k

ij | ≤ c1

√
1

nK

(√
|gmax|+

π√
2

√
q logG0

)∑
k

‖∆k,−‖1.
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By Cauchy-Schwarz inequality and the definition of ∆k ∈ Un(Ω̃k),∑
k

‖∆k,−‖1 ≤
∑
k

(2|Êk|)1/2‖∆k,−‖F ≤ max
k

(2|Êk|)1/2
√
K
(∑

k

‖∆k‖2F
)1/2

.

Using the bound of Êk in (17) and the definition of rn, we obtain

|L1| ≤ c1

√
1

n

(√
|gmax|+

π√
2

√
q logG0

)
8
√

2φmaxS0

κ(s0)

(∑
k

‖∆k‖2F
)1/2

=
8
√

2c1
√
φmax

Cbiasκ(s0)
rn

(
Mr2

n

)1/2
=

8
√

2c1
√
φmax

Cbiasκ(s0)

√
Mr2

n, (23)

where the first equality in (23) follows from the definition of rn in (21).
Using results from (19) and (18) together with Cauchy-Schwarz inequality, the second term L2

can be bounded by

|L2| ≤
∑
k

|〈Σ̃k − Σk
0,∆

k〉| ≤
∑
k

‖Σ̃k − Σk
0‖F ‖∆k‖F ≤

∑
k

‖∆k‖F
‖Ω̃k − Ωk

0‖F
φmin(Ω̃k)φmin(Ωk

0)
(24)

≤ 1

(1− τ1)d0
2

(∑
k

‖∆k‖2F
)1/2(∑

k

‖Ω̃k − Ωk
0‖2F

)1/2
≤

√
Mr2

n

(1− τ1)d0
2 ,

where the last inequality in (24) comes from the rotation invariant property of the Frobenius norm.
Finally we bound L3. Suppose for a small constant 0 < τ2 < 1 such that τ1 + τ2 < 1, the

sample size n satisfies

n ≥MS0

(√
|gmax|+

π√
2

√
q logG0

)2(Cbias

τ2d0

)2

,

then
√
Mrn ≤ τ2d0. By (20), φmax(Ω̃k) is bounded above by c0 + τ1d0. Therefore for ∆ ∈ Tn,

φmax(Ω̃k + ∆k) ≤ c0 + τ1d0 + ‖∆k‖ ≤ c0 + τ1d0 + ‖∆k‖F

≤ c0 + τ1d0 +
(∑

k

‖∆k‖2F
)1/2

≤ c0 + (τ1 + τ2)d0,

φmin(Ω̃k + ∆k) ≥ (1− τ1)d0 − ‖∆k‖ ≥ (1− τ1)d0 − ‖∆k‖F

≥ (1− τ1)d0 −
(∑

k

‖∆k‖2F
)1/2

≥ (1− τ1 − τ2)d0 > 0.

For Ω̃k and ∆k defined above, Zhou et al. (2011) showed that Ω̃k + t∆k � 0, t ∈ [0, 1], for all
k = 1, . . . ,K on the event A. Thus, following similar arguments as in Rothman et al. (2008, page
502), we have

|L3| ≥
1

2

∑
k

φ2
min(Ω̃k + ∆k)−1‖∆k‖2F =

1

2

∑
k

φ−2
max(Ω̃k + ∆k)‖∆k‖2F

≥ Mr2
n

2(c0 + τ1d0 + τ2d0)2
.
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Combining the above three bounds, we thus have

G(∆) ≥ |L3| − |L1| − |L2|

≥ Mr2
n

2(c0 + τ1d0 + τ2d0)2
− 8
√

2c1
√
φmax

Cbiasκ(s0)

√
Mr2

n −
√
Mr2

n

(1− τ1)d0
2

≥Mr2
n

{
1

2(c0 + τ1d0 + τ2d0)2
− 8c1

√
2φmax

Cbiasκ(s0)

1√
M
− 1

(1− τ1)d0
2
√
M

}
> 0,

for M sufficiently large.

Appendix B. Proof of Theorem 2

Consider the group lasso estimator Θ̂i defined in (2). Since the problem (2) is a special case of the
generic group lasso in Basu et al. (2015), we adapt their results in Theorem 4.1 to our design.
Proof Let Xi be the block diagonal matrix composed of all variables but Xk

i (k = 1, . . . ,K), that
is

Xi =

X1
−i

. . .
XK
−i

 .

After rearranging the columns of Xi, we assume without loss of generality Xi = (Xi,(1),Xi,(2))
such that

Xi,(1) = diag(X1
I1 , . . . ,X

K
IK

)

is the sub-matrix consisting of all relevant variables. Denote the Gram matrix

C =
1

n
X Ti Xi =

(
C11 C12

C21 C22

)
with C11 = X Ti,(1)Xi,(1)/n and C22 = X Ti,(2)Xi,(2)/n. C12 and C21 are also defined accordingly.
Note due to the block diagonal structure of Xi,(1), C11 is also block diagonal.

Now consider interchanging the columns of Xi such that

X̃i = Xidiag(R1, R2) = (Xi,(1)R1,Xi,(2)R2) = (X̃i,(1), X̃i,(2)),

where the columns of X̃i,(1) and X̃i,(2) are ordered in groups of variables. Here Rl is the prod-
uct of elementary column switching matrices and satisfies R−1

l = RTl (l = 1, 2). Note R1 ∈
M(
∑

k |Ik|,
∑

k |Ik|). Based on X̃i, we can define C̃11, C̃21 and C̃22 similarly as above. The advan-
tage of using X̃i as the design matrix is that it orders the variables based on the grouping structures,
and is in the form of the generic group lasso design in Basu et al. (2015). It is thus more straight-
forward to adapt their results using X̃i. Moreover, since each group of variables (j, g) corresponds
to regression coefficients at the same (i, j) position across different models in g, the matrix C̃11

is in fact a block matrix, whose diagonal blocks are all identity matrices. To see this, consider
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g = {k1, k2}, the columns of X̃i,(1) that correspond to the group (j, g) is

Xg
j =



0 0
...

...
Xk1
j 0

0 Xk2
j

...
...

0 0


.

Hence the (j, g)-th diagonal block (C̃11)[j,g] = (Xg
j )
TXg

j/n = I2.
With the above notations, the Uniform IC in Assumption (A3) is equivalent to saying for all

ξ = ((ξ1)T , . . . , (ξK)T )T ∈ R
∑

k |Ik| with max
(j,g)∈J(Θ0,i)

‖ξ[g]
j ‖ ≤ 1 and all (j, g) /∈ J(Θ0,i)

‖
[
C̃21(C̃11)−1ξ̃

]
[j,g]
‖ ≤ 1− η,

where ξ̃ = RT1 ξ.
It remains to select λ and αn to ensure that the direction consistency results hold simultaneously

for all i with probability tending to 1. For any (j, g) ∈ J(Θ0,i), denote (C̃11)−1
[j,g] the diagonal block

in C̃−1
11 corresponding to the group (j, g). By Theorem 4.1 of Basu et al. (2015), it suffices to find

the upper bounds for ‖C̃−1
11 ‖, ‖(C̃11)−1

[j,g]‖, ‖(C̃22)[j,g]‖ and substitute the constant variance σ with

the appropriate bound for Var(Xk
i |Xk

−i) = 1/ωk0,ii (k = 1, . . . ,K).
By definition and the fact that the columns of Xk are centered and standardized to have mean

zero and unit variance, (C̃11)[j,g] is the identity matrix of size |g| × |g|. It follows that

1 = φ−1
min((C̃11)[j,g]) ≤ φmax((C̃11)−1

[j,g]) = ‖(C̃11)−1
[j,g]‖ ≤ ‖(C̃11)−1‖, (25)

where the last step is obtained by applying Courant minimax principle since 0 ≺ (C̃11)−1
[j,g] �

(C̃11)−1. Similarly, for any (j, g) /∈ J(Θ0,i), (C̃22)[j,g] is the identity matrix and

‖(C̃22)[j,g]‖ = 1. (26)

Moreover, the variance for the random design in our problem

Var(Xk
i |Xk

−i) = 1/ωk0,ii ≤ 1/d0, ∀ k, (27)

by Assumption (A2).
It remains to find an upper bound for ‖C̃−1

11 ‖. Under Assumption (A1) with s = s0, if we set
∆ ∈ F such that δ[g]

j = 0 for any (j, g) /∈ J(Θ0,i), then

∑
k ‖Xkδk‖2/n
‖∆J(Θ0,i)‖2F

=
ξTC11ξ

ξT ξ
,
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where ξ = ((ξ1)T , . . . , (ξK)T )T ∈ R
∑

k |Ik| such that each ξk corresponds to the nonzero part of
δk. If we choose ∆ such that ξ is the eigenvector corresponding to the smallest eigenvalue of C11,
then

κ2(s0) ≤
∑

k ‖Xkδk‖2/n
‖∆J(Θ0,i)‖2F

=
ξTC11ξ

ξT ξ
= φmin(C11).

SinceR−1
1 = RT1 ,C11 and C̃11 are similar (there exists a non-singular matrixP such thatP−1C11P =

C̃11) and thus share the same set of eigenvalues. Therefore φmin(C̃11) ≥ κ2(s0) and

‖C̃−1
11 ‖ ≤ κ

−2(s0). (28)

Combining the upper bounds in (25), (26), (27) and (28), Theorem 4.1 of Basu et al. (2015)
implies that if we select λ and αn as in (8) and (9), respectively, the direction consistency results
follow by considering the union bound on all probabilities made across i = 1, . . . , p.

Further, if αn < 1, the direction consistency property of Θ̂i implies exact recovery of all nonzero
entries in the inverse covariance matrices, provided that the sparsity pattern G is correctly specified.
In other words, the set in (3) estimates correctly the true edge set Ek0 for all k.

The probability statement 1 − 4pG1−q
0 follows from considering the union bound of the above

result over all p regressions.
This completes the proof.

Appendix C. Additional Simulation Results

C.1 Performance with and without maximum likelihood refitting

In the main paper, we have compared the performance of different methods in estimating multiple
Gaussian graphical models under optimally chosen tuning parameters with the results shown in
Tables 1 and 2. All joint estimation methods were evaluated by adding the maximum likelihood
refitting Step (II) for fair comparisons. To confirm that this is indeed the case, we present in the
following additional simulation results for cases evaluated without the maximum likelihood refitting
step.

Table 5 presents the complete table of deviance measures for various methods considered in sim-
ulation study 1. These methods include the separate estimation method Glasso, where the Graphical
lasso by Friedman et al. (2008) is applied to each graphical model separately, joint estimation by
Guo et al. (2011), denoted by JEM-G, the Group Graphical Lasso denoted by GGL by Danaher
et al. (2014), and the structural pursuit method MGGM by Zhu et al. (2014). For the latter three
methods, we also present deviance measures for which the maximum likelihood refitting Step (II)
is not included, denoted respectively by JEM-G1, GGL1 and MGGM1. For the proposed two-step
method JSEM, deviance measures based on Step I only is presented under the name JSEM1. It
is clear from Table 5 that the refitting step generally does not introduce more errors in terms of
structural estimation, but can significantly reduce the estimation errors in Frobenius norm.

Table 6 presents the performance of different regularization methods in estimating multiple
inverse covariance matrices in simulation study 2. Here we observe similar pattern as that in Table
5, which confirms again that contribution from the maximum likelihood refitting step is mainly in
reducing the Frobenius norm loss.

31



MA AND MICHAILIDIS

Method FP FN SHD F1 FL
Glasso 35(6) 81(2) 116(5) 0.32(0.02) 0.73(< 0.01)
JEM-G1 22(4) 40(4) 62(6) 0.69(0.03) 0.28(0.03)
JEM-G 22(4) 40(4) 62(6) 0.69(0.03) 0.28(0.02)
GGL1 18(7) 73(2) 91(7) 0.44(0.03) 0.70(0.01)
GGL 17(6) 73(2) 90(6) 0.44(0.03) 0.29(0.02)
MGGM1 291(14) 47(3) 339(14) 0.26(0.01) 0.69(0.02)
MGGM 286(13) 49(3) 335(13) 0.26(0.01) 0.64(0.02)
JSEM1 20(4) 34(3) 54(6) 0.73(0.03) 0.71(0.04)
JSEM 19(4) 35(3) 54(6) 0.73(0.03) 0.25(0.02)

Table 5: Performance of different regularization methods for estimating graphical models in Simu-
lation Study 1: average FP, FN, SHD, F1 and FL (SE) for sample size nk = 50. JEM-G1,
GGL1, MGGM1 and JSEM1 correspond to respective method without the maximum like-
lihood refitting step. The best cases are highlighted in bold.

C.2 Performance as a function of p and n

Table 7 presents the performance of JSEM for p = 500 and p = 1000 with sample sizes n varying
from 100, 200 to 500. The simulation setup is similar to that in Simulation Study 1: at each p, there
are K = 5 graphical models sharing a single common structure. Individual structures with ρ = 0.1
are added to each graph separately such that about 10% of the edges in each graph are unique to
themselves. It is clear that as the sample size n increases, the performance of JSEM also improves
with smaller structural hamming distances (SHD), higher F1 score (F1) and smaller Frobenius norm
loss (FL). In particular, the number of falsely rejected edges (FN) has decreased significantly.

Appendix D. Real Data Analysis

D.1 Climate data sources and pre-processing

The data we use in this study come from multiple sources and are collected under different resolu-
tions for varying lengths of time periods. Specifically, the sources we consider include:

(1) CRU: Climate Research Unit provides monthly climatology data (http://www.cru.uea.
ac.uk/cru/data) for 10 surface variables including mean temperature (TMP), diurnal
temperature range (DTR), maximum and minimum temperature (TMX, TMN), precipitation
(PRE), vapor pressure (VAP), cloud cover (CLD), rainday counts (WET), potential evapo-
transpiration (PET) and frost days (FRS) from 1901 to 2013 at the 0.5 degree latitude and
longitude resolution. Note these high-resolution gridded data sets are constructed using not
only directly observed data, but also derived and estimated values with well-known formulae
wherever the observed data are not available (see details in Harris et al., 2014).

(2) NASA: The Goddard Earth Sciences Data and Information Services Center (GES DISC) from
the National Aeronautics and Space Administration (NASA) has collected aerosol measure-
ments using Moderate Resolution Imaging Spectroradiometer (MODIS) on satellites. The
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ρ Method FP FN SHD F1 FL

0

Glasso 154(4) 38(1) 192(4) 0.51(0.01) 0.60(0.005)
JEM-G1 87(2) 36(2) 123(3) 0.62(0.01) 0.41(0.01)
JEM-G 86(3) 36(2) 122(3) 0.62(0.01) 0.31(0.01)
GGL1 152(3) 38(1) 191(4) 0.51(0.01) 0.60(0.01)
GGL 144(3) 39(1) 184(4) 0.52(0.01) 0.37(0.01)
MGGM1 30(2) 67(1) 97(2) 0.59(0.01) 0.37(0.01)
MGGM 30(2) 67(1) 97(2) 0.59(0.01) 0.36(0.01)
JSEM1 22(2) 42(2) 64(3) 0.75(0.01) 0.68(0.01)
JSEM 21(2) 42(2) 63(3) 0.75(0.01) 0.28(0.01)

0.2

Glasso 164(3) 47(1) 211(4) 0.53(0.01) 0.59(0.005)
JEM-G1 94(3) 57(2) 151(3) 0.59(0.01) 0.44(0.01)
JEM-G 92(3) 57(2) 149(3) 0.59(0.01) 0.35(0.01)
GGL1 163(3) 47(1) 210(4) 0.53(0.01) 0.59(0.005)
GGL 155(3) 48(1) 203(3) 0.53(0.01) 0.37(0.01)
MGGM1 98(4) 63(1) 161(4) 0.56(0.01) 0.38(0.01)
MGGM 94(3) 64(1) 158(4) 0.56(0.01) 0.37(0.01)
JSEM1 33(3) 64(2) 97(3) 0.67(0.01) 0.77(0.01)
JSEM 32(3) 64(2) 96(3) 0.67(0.01) 0.32(0.01)

0.4

Glasso 159(3) 59(1) 218(4) 0.55(0.01) 0.57(0.005)
JEM-G1 101(3) 77(2) 178(3) 0.56(0.01) 0.45(0.01)
JEM-G 100(3) 77(2) 177(3) 0.56(0.01) 0.37(0.01)
GGL1 158(3) 60(1) 218(4) 0.55(0.01) 0.57(0.005)
GGL 149(3) 61(2) 210(4) 0.55(0.01) 0.37(0.01)
MGGM1 122(3) 65(1) 187(3) 0.57(0.01) 0.38(0.01)
MGGM 119(3) 65(1) 184(3) 0.58(0.01) 0.37(0.01)
JSEM1 50(3) 83(2) 133(3) 0.62(0.01) 0.84(0.01)
JSEM 49(3) 84(2) 132(3) 0.62(0.01) 0.36(0.01)

0.6

Glasso 176(4) 73(2) 249(4) 0.54(0.01) 0.55(0.01)
JEM-G1 95(3) 109(2) 204(4) 0.52(0.01) 0.45(0.01)
JEM-G 94(3) 109(2) 203(3) 0.52(0.01) 0.39(0.01)
GGL1 174(4) 74(2) 248(4) 0.54(0.01) 0.55(0.01)
GGL 165(4) 76(2) 241(4) 0.54(0.01) 0.39(0.01)
MGGM1 113(3) 94(2) 207(4) 0.55(0.01) 0.39(0.01)
MGGM 109(3) 95(2) 204(4) 0.55(0.01) 0.39(0.01)
JSEM1 52(3) 122(2) 174(4) 0.53(0.01) 0.89(0.01)
JSEM 50(3) 123(2) 173(4) 0.52(0.01) 0.38(0.01)

Table 6: Performance of different regularization methods for estimating graphical models in Simu-
lation Study 2: average FP, FN, SHD, F1 and FL (SE) for sample size nk = 100. JEM-G1,
GGL1, MGGM1 and JSEM1 correspond to respective method without the maximum like-
lihood refitting step. The best cases are highlighted in bold.
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p n FP FN SHD F1 FL

500
100 20(4) 179(8) 200(9) 0.79(0.01) 0.21(0.01)
200 40(5) 50(3) 90(6) 0.92(0.005) 0.14(0.01)
500 49(3) 36(1) 85(3) 0.92(0.002) 0.09(0.003)

1000
100 17(4) 643(14) 661(15) 0.58(0.01) 0.23(0.005)
200 34(5) 187(9) 221(10) 0.89(0.005) 0.14(0.005)
500 77(6) 80(2) 157(5) 0.93(0.002) 0.10(0.003)

Table 7: Performance of JSEM as a function of p and n: average FP, FN, SHD, F1 and FL (SE).
The setup is similar to that in Simulation Study 1.

data set obtained from Terra satellite consists of monthly average aerosol optical depth (AER)
at the 1 degree latitude by 1 degree longitude resolution from March 2000 to August 2014.

(3) NCDC: The National Solar Radiation Database (NSRDB) 1991-2010 (a collaborative project
between The National Renewable Energy Laboratory (NREL) and the National Climatic Data
Center (NCDC)) provides statistical summaries for solar data (ftp://ftp.ncdc.noaa.
gov/pub/data/nsrdb-solar/) from 860 different locations across the United States.
The locations are recorded using their latitude, longitude and altitude. We used measurements
for global horizontal radiation (SOL) at 242 class I stations that have high-quality data.

(4) NOAA: The climate data center of National Oceanic and Atmospheric Administration (NOAA)
has archived the trace gases data, including carbon dioxide (CO2), carbon monoxide (CO),
methane (CH4) and hydrogen (H2), from 170 worldwide stations (http://www.esrl.
noaa.gov/gmd/dv/ftpdata.html). These data sets consist of measurements span-
ning different time periods, with CO2 ranging from 1968 to 2013 (the longest) and H2 from
1992 to 2005 (the shortest). In addition, they come with relatively low resolution compared
to other variables due to the limited number of stations.

To ensure compatibility and consistency among multiple data sources, we performed the fol-
lowing pre-processing:

(1) Normalization: We first transformed each data set into monthly observations in a standard
format including longitude, latitude, altitude (when available), date, variable, value, unit, and
source. We focus on a 54-month time period from January 2001 to June 2005 where data for
all variables are available.

(2) Interpolation and smoothing: We interpolated the monthly data from NCDC and NOAA onto
a common 2.5 by 2.5 degree grid for North America using thin plate splines. Since the data
from CRU and NASA were provided for a finer resolution grid, thin plate splines were used
to first interpolate the data onto a grid of the same resolution as the source data. Then we
performed spatial averaging to get data on the common 2.5 by 2.5 degree grid.

(3) Seasonality and autocorrelation: We reduced the short-term autocorrelation by aggregating
the time series for each variable at each location into bins of 3-month intervals and taking
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first differences on the quarterly data. The resulting data, consisting of 17 measurements, are
assumed to be independent samples for the corresponding variable at the specified location.

The final data are organized as an n × p matrix at each of the 27 locations considered, where
n = 17 and p = 16.

D.2 Additional results in climate modeling

The inferred networks at the six distinct climate zones using JSEM are presented in Section 5. The
estimated networks at the 27 distinct locations are also presented in Figure 8 for reference. For
notational convenience, we have renamed the climate zones such that BW for Midlatitude Desert,
Cfa for Humid Subtropical, Bsh for Semiarid Steppe (hot arid), Bsk for Semiarid Steppe (cold arid),
Dfa for Humid Continental (hot summer), and Dfb for Humid Continental (warm summer).

The networks in Figure 8 are ordered such that those in the same row belong to the same cli-
mate zone; further, networks in the third and forth rows represent those from the Semiarid Steppe
group, whereas networks in the last two rows are all from the Humid Continental group. Such an
ordering respects how the structural information is defined and helps visualize similarities across
networks. Indeed, by comparing networks at locations from geographical south, that is networks
entitled ‘South’, we notice that the interactions between AER, SOL and the remaining variables are
very similar. For example, almost all of them share the edges AER—SOL and SOL—H2, except
at two locations ‘BW South desert 3’ and ‘BW South desert 7’. In contrast, networks from the
geographical north all share the edges AER—H2 and SOL—H2. Further, the interactions between
variables on greenhouse gases (CO2, CO, CH4 and H2) and others have four distinct patterns at the
four distinct climate groups. For example, greenhouse gases interact with VAP for the desert group,
whereas they interact with CLD in the subtropical group. The partial correlation between CLD and
greenhouse gases at subtropical climate makes sense because such humid areas are more likely to
be cloudy, thereby influencing the concentration of CO2 (Graham et al., 2003). Finally, variables
excluding AER, SOL and those on greenhouse gases show distinct interaction patterns with others
at the six distinct climate zones. In particular, one can see that the variable FRS interacts mainly
with PET at Desert and Steppe climate, whereas it is partially correlated with both PRE and TMN
(or TMX) at Continental climate. This can be explained from the distinction between these climate
zones. At Humid Continental climate, precipitation is relatively well distributed year-round in most
areas and snowfall occurs in all areas. It is thus not difficult to see why precipitation (PRE) and
temperature related variables correlate with the number of frost days (FRS). Further, a primary cri-
terion of an area being Midlatitude Desert or Semiarid Steppe is that it receives precipitation below
potential evapotranspiration (PET), which possibly explains why FRS is partially correlated only
with PET for Desert and Steppe climate. We also point out that networks at adjacent climate zones
are very similar. For example, networks at ‘Bsh Steppe’ and ‘Bsk Steppe’ share similar topologies.

As a comparison, we also applied other joint estimation methods JEM-G, GGL and MGGM on
the same data set. For each of the three methods considered here, we used BIC on the normalized
data to select the optimal tuning parameters and coupled each method with complementary pairs
stability selection (Shah and Samworth, 2013) to infer the related climate networks. As in the case
of JSEM, we run each method 50 times on two randomly drawn complementary pairs of size 8 and
9 and kept only edges that are selected above a certain threshold. The selection probability used for
JSEM is 70%. However, as the second simulation study indicates JEM-G and GGL tend to produce
higher false positives, especially GGL, we increased the probability threshold for JEM-G and GGL
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Figure 8: Estimated climate networks at the 27 locations using JSEM, with edges shared across all
locations solid and differential edges dashed.

36



JOINT STRUCTURAL ESTIMATION OF MULTIPLE GRAPHICAL MODELS

Midlatitude Desert

CLD

DTR

FRS

PET
PRE

TMN

TMP

TMX

VAP

WET

CO2

CO
H2

CH4

AER

SOL

Semiarid Steppe (hot arid)

CLD

DTR

FRS

PET
PRE

TMN

TMP

TMX

VAP

WET

CO2

CO
H2

CH4

AER

SOL

Semiarid Steppe (cold arid)

CLD

DTR

FRS

PET
PRE

TMN

TMP

TMX

VAP

WET

CO2

CO
H2

CH4

AER

SOL

Humid Subtropical

CLD

DTR

FRS

PET
PRE

TMN

TMP

TMX

VAP

WET

CO2

CO
H2

CH4

AER

SOL

Humid Continental (hot summer)

CLD

DTR

FRS

PET
PRE

TMN

TMP

TMX

VAP

WET

CO2

CO
H2

CH4

AER

SOL

Humid Continental (warm summer)

CLD

DTR

FRS

PET
PRE

TMN

TMP

TMX

VAP

WET

CO2

CO
H2

CH4

AER

SOL

Figure 9: Estimated climate networks at the six distinct climate zones using JEM-G, with edges
shared across all locations solid and differential edges dashed.

to 90% and 100%, respectively. On the other hand, we reduced the threshold for MGGM to 50%
due to the relatively few edges recovered. The results are shown in Figure 9, 10 and 11.

One can see clearly that the estimated networks using the three methods exhibit quite different
connectivity patterns from those inferred from JSEM. In particular, the results from GGL seem to
suggest strong conditional dependence among a subset of variables, which distinguishes itself from
JEM-G and JSEM. The estimated networks using MGGM, though sparse, bear certain similarity to
those recovered using GGL. On the other hand, the results from JEM-G and JSEM are more similar.
For example, common edges identified using JEM-G, such as TMN—TMP, TMP—TMX, PRE—
WET, also show up under JSEM. The common edge between CLD and CO2 is found at all locations
except Midlatitude Desert under JSEM, whereas the edge between PET and SOL identified using
JSEM exists everywhere except at Semiarid Steppe (cold arid) under JEM-G. Note although JEM-
G does not require external information on the structural relationships across graphs, the inferred
networks respect roughly the spatial pattern of all climate zones. For instance, Humid Continental
(hot summer and cool summer) are more similar.

D.3 Additional results in analysis of breast cancer

We have presented the inferred pathway level networks under both ER+ and ER- status using
JSEM in the main paper. As a comparison, we applied JEM-G with tuning parameters selected
via BIC to the same normalized and processed data set. To ensure a stable estimation, we further
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Figure 10: Estimated climate networks at the six distinct climate zones using GGL, with edges
shared across all locations solid and differential edges dashed.

coupled JEM-G with complementary pairs stability selection (Shah and Samworth, 2013). Fig-
ure 12 shows the pathway level interactions estimated from JEM-G at selection frequency 70%,
after removing isolated pathways. One striking difference between Figure 12 and Figure 7 is that
Figure 12 sees more edges shared across the two classes (in blue). This is partly due to how JEM-G
is implemented directly via the sample covariance matrices and partly to JEM-G being an agnostic
method.

We also present estimated gene-level networks (with isolated genes removed) using both JEM-G
and JSEM in Figure 13. Similar to what we observe in the pathway level network comparison, the
JEM-G recovered gene networks show more edges shared between the two classes. In comparison,
JSEM recovers more differential edges for the ER+ class. Apart from the differences, we also
observe some similarities between the estimated gene networks. For example, both methods identify
a small hub around the gene SFRP1, indicating their potential in regulating the underlying biological
process.

Appendix E. Additional Technical Details

We include here some additional lemmas and proofs necessary for establishing the theoretical results
in Section 3.

The first lemma is borrowed from Basu et al. (2015, Lemma A.2). We state the result here for
completeness. Please refer to their paper for proof of the lemma.
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Figure 11: Estimated climate networks at the six distinct climate zones using MGGM, with edges
shared across all locations solid and differential edges dashed.

Lemma E.1 Let Zk×1 ∼ N (0,Σ). Then for any t > 0, the following inequalities hold:

P
(∣∣‖Z‖ − E‖Z‖∣∣ > t

)
≤ 2 exp

(
− 2t2

π2‖Σ‖

)
, E‖Z‖ ≤

√
k
√
‖Σ‖.

The next lemma provides a concentration bound for the random event A used in the proof of
Theorem 1.

Lemma E.2 Consider the random event A =
⋂

i,j 6=i,g
Agij , where Agij = {2‖ζ[g]

ij ‖ ≤ λgij} and ζ[g]
ij is

defined in Section A.1 of the Appendix. For each combination of (i, j 6= i, g), choose

λgij ≥ max
k∈g

2√
nωk0,ii

(√
|g|+ π√

2

√
q logG0

)
. (29)

where q > 1 and G0 is the maximum number of groups in all regressions. Then

P(A) ≥ 1− 2pG1−q
0 .

Proof By Bonferroni inequality, P(Ac) ≤
∑

i,j 6=i,g
P({Agij}c). For any 3-tuple of (i, j 6= i, g), it

suffices to find an upper bound for P({Agij}c). Denote Ψk
j = (Xk

j )
TXk

j /n and Φk
j = Xk

j (X
k
j )
T /n,
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Figure 12: Estimated pathway networks for the ER+ and ER- classes using JEM-G, with edges
shared blue solid and differential edges red dashed (ER+) / green dashed (ER-).

both of rank 1. The eigendecomposition of Φk
j is Φk

j = QkVk(Qk)T , where Qk is the orthogonal
matrix whose columns are the eigenvectors of Φk

j and Vk is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues. It is clear that the only non-zero eigenvalue of Φk

j is
given by γkj = ‖Xk

j ‖2/n = 1. Let Qk1 be the eigenvector corresponding to γkj . Therefore

‖ζ[g]
ij ‖

2 =
∑
k∈g

(
ζkij

)2
=
∑
k∈g

1

n2
(εki )

TXk
j (X

k
j )
Tεki =

1

n

∑
k∈g

(εki )
TQkVk(Qk)Tεki ,

=
1

n

∑
k∈g

(εki )
TQk1γ

k
j (Qk1)Tεki =

1

n
‖Z [g]‖2,

where Z [g] = (Zk)k∈g with Zk = (Qk1)Tεki . By definition of εki , Var(Zk) = 1/ωk0,ii and Var(Z [g])

is a diagonal matrix with the diagonal (1/ωk0,ii)k∈g. Note that the independence of Zk and Zk
′
(k 6=

k′) comes from the fact that εki and εk
′
i are independent. Therefore

P({Agij}
c) = P(‖Z [g]‖/

√
n > λgij/2) = P(‖Z [g]‖ − E‖Z [g]‖ >

√
nλgij/2− E‖Z

[g]‖).
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Figure 13: Estimated gene networks combined using JEM-G (left) and JSEM (right), with edges
shared between ER+ and ER- blue solid and differential edges red dashed (ER+) / green
dashed (ER-).

Applying Lemma E.1,

P({Agij}
c) ≤ P(|‖Z [g]‖ − E‖Z [g]‖| >

√
nλgij/2− E‖Z

[g]‖)

≤ 2 exp

− 2

π2‖Var(Z [g])‖

(√
nλgij
2
− E‖Z [g]‖

)2
 .

Choose λgij such that the right-hand side of above inequality is less than 2G−q0 for some positive
parameter q. Then

λgij ≥
2√
n

(
E‖Z [g]‖+

π√
2

√
q logG0

√
‖Var(Z [g])‖

)
,

and is satisfied if

λgij ≥ max
k∈g

2√
nωk0,ii

(√
|g|+ π√

2

√
q logG0

)
,

by Lemma E.1. With the above choice of λgij ,

P(Ac) ≤
p∑
i=1

∑
j 6=i

∑
g∈G ij

P({Agij}
c) ≤ 2pG1−q

0 ,

or equivalently, P(A) ≥ 1− 2pG1−q
0 .
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Proof of Proposition A.1

Proof For all Θi ∈ M(p− 1,K), using a similar argument to that in Lemma 3.1 of Lounici et al.
(2011), it is straightforward to verify the following:

K∑
k=1

1

n
‖Xk
−i(θ̂

k

i − θk0,i)‖2 +
∑
j 6=i

∑
g∈Gij

λgij‖θ̂
[g]

ij − θ
[g]
ij ‖

≤
K∑
k=1

1

n
‖Xk
−i(θ

k
i − θk0,i)‖2 + 4

∑
(j,g)∈J(Θi)

λgij min
(
‖θ[g]

ij ‖, ‖θ̂
[g]

ij − θ
[g]
ij ‖
)
, (30)

{∑
k∈g
〈n−1Xk

j ,X
k
−i(θ̂

k

i − θk0,i)〉2
}1/2

≤
3λgij

2
, (31)

M(Θ̂i) ≤
4φmax

λ2
min

K∑
k=1

1

n
‖Xk
−i(θ̂

k

i − θk0,i)‖2, (32)

where λmin and φmax are defined in Proposition A.1.
Let ∆ = (δ1, . . . , δK) be a matrix in M(p,K) such that δkj = θ̂kij − θk0,ij for j 6= i and δki = 0

for all k. We would like to first find an upper bound for B2, where

B2 :=
∑
k

1

n
‖Xk
−i(θ̂

k

i − θk0,i)‖2 =
∑
k

1

n
‖Xkδk‖2.

On the event A, we have∑
j 6=i

∑
g∈G ij

λgij‖δ
[g]
j ‖ ≤ B

2 +
∑
j 6=i

∑
g∈G ij

λgij‖δ
[g]
j ‖ ≤ 4

∑
(j,g)∈J(Θ0,i)

λgij‖δ
[g]
j ‖, (33)

where the second inequality follows from setting Θi = Θ0,i in (30). Therefore∑
(j,g)∈J(Θ0,i)c

λgij‖δ
[g]
j ‖ ≤ 3

∑
(j,g)∈J(Θ0,i)

λgij‖δ
[g]
j ‖,

which implies that ∆ ∈ F , the restricted set defined in Assumption (A1). Under Assumption (A1)
with κ = κ(s0), one has

B2 ≥ κ2‖∆J‖2F = κ2
∑

(j,g)∈J(Θ0,i)

‖δ[g]
j ‖

2. (34)

Combing (33) and the Cauchy-Schwarz inequality, we obtain

B2 ≤ 4
∑

(j,g)∈J(Θ0,i)

λgij‖δ
[g]
j ‖ ≤4

{ ∑
(j,g)∈J(Θ0,i)

(λgij)
2
}1/2( ∑

(j,g)∈J(Θ0,i)

‖δ[g]
j ‖

2
)1/2

(35)

≤4
{ ∑

(j,g)∈J(Θ0,i)

(λgij)
2
}1/2B

κ
, (36)
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where the last inequality in (36) comes from (34). Canceling out the extra B in (36), we get

B2 =
∑
k

1

n
‖Xk
−i(θ̂

k

i − θk0,i)‖2 ≤
16

κ2

∑
(j,g)∈J(Θ0,i)

(λgij)
2. (37)

To show the inequality in (11), we note by (33), the Cauchy-Schwarz inequality, (34) and (37),∑
j 6=i

∑
g∈G ij

‖δ[g]
j ‖ ≤

1

λmin

∑
j 6=i

∑
g∈G ij

λgij‖δ
[g]
j ‖ ≤

4

λmin

∑
(j,g)∈J(Θ0,i)

λgij‖δ
[g]
j ‖

≤ 4

λmin

{ ∑
(j,g)∈J(Θ0,i)

‖δ[g]
j ‖

2
}1/2{ ∑

(j,g)∈J(Θ0,i)

(λgij)
2
}1/2

≤ 4

λmin

B

κ

{ ∑
(j,g)∈J(Θ0,i)

(λgij)
2
}1/2

≤ 16

κ2λmin

∑
(j,g)∈J(Θ0,i)

(λgij)
2.

(12) follows readily from (32) and (37)

M(Θ̂i) ≤
4φmax

λ2
min

B2 ≤ 64φmax

κ2λ2
min

∑
(j,g)∈J(Θ0,i)

(λgij)
2.

Finally, we prove (13). Let J0 = J(Θ0,i) and J1 denote the set of indices in Jc0 corresponding
to the si largest values of λgij‖δ

[g]
j ‖. The dependence of J0 and J1 on i is made implicit here for

clarity. Let J01 = J0 ∪ J1. So |J01| ≤ 2si. Let (j`, g`) be the index of the `th largest element of the
set {λgij‖δ

[g]
j ‖ : (j, g) ∈ Jc0}. Then

λg`ij`‖∆
[g`]
ij`
‖ ≤

∑
(j,g)∈Jc

0

λgij‖δ
[g]
j ‖

`
.

Combining with the fact that ∆ ∈ F , we have on the event A,

∑
(j,g)∈Jc

01

(
λgij‖δ

[g]
j ‖
)2
≤

∑
(j,g)∈Jc

0

(
λgij‖δ

[g]
j ‖
)2
≤

∞∑
`=si+1

(∑
(j,g)∈Jc

0
λgij‖δ

[g]
j ‖
)2

`2

≤ 1

si

( ∑
(j,g)∈Jc

0

λgij‖δ
[g]
j ‖
)2

≤ 9

si

( ∑
(j,g)∈J0

λgij‖δ
[g]
j ‖
)2

≤ 9

si

∑
(j,g)∈J0

(λgij)
2‖∆J0‖2F (38)

≤ 9

si

∑
(j,g)∈J0

(λgij)
2‖∆J01‖2F ,
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where (38) comes from the Cauchy-Schwarz inequality. It follows immediately that

λ2
min

∑
(j,g)∈Jc

01

‖δ[g]
j ‖

2 ≤ 9

si

∑
(j,g)∈J0

(λgij)
2‖∆J01‖2F .

Hence

‖Θ̂i −Θ0,i‖2F =
∑
j 6=i

∑
g∈G ij

‖δ[g]
j ‖

2 = ‖∆J01‖2F + ‖∆Jc
01
‖2F

≤‖∆J01‖2F +
9

siλ2
min

∑
(j,g)∈J0

(λgij)
2‖∆J01‖2F

≤ 10

siλ2
min

∑
(j,g)∈J0

(λgij)
2‖∆J01‖2F . (39)

Now we bound ‖∆J01‖F . Note (35) implies that

B2 ≤ 4
{ ∑

(j,g)∈J0

(λgij)
2
}1/2
‖∆J0‖F ≤ 4

{ ∑
(j,g)∈J0

(λgij)
2
}1/2
‖∆J01‖F .

Further we have B2 ≥ κ2(2s0)‖∆J01‖2F under Assumption (A1) with s = 2s0. So

‖∆J01‖2F ≤
B2

κ2(2s0)
≤ 4

κ2(2s0)

{ ∑
(j,g)∈J0

(λgij)
2
}1/2
‖∆J01‖F ,

which implies

‖∆J01‖F ≤
4

κ2(2s0)

{ ∑
(j,g)∈J0

(λgij)
2
}1/2

. (40)

Plugging the bound in (40) into (39), we obtain

‖Θ̂i −Θ0,i‖2F ≤

{
4
√

10

κ2(2s0)

}2{∑
(j,g)∈J0(λgij)

2

λmin
√
si

}2

,

or equivalently

‖Θ̂i −Θ0,i‖F ≤
4
√

10

κ2(2s0)

∑
(j,g)∈J(Θ0,i)

(λgij)
2

λmin
√
si

.
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Proof of Corollary A.1

Proof By definition, ωk0,ij = −θk0,ijωk0,ii for all j 6= i and k = 1, . . . ,K. Further, under Assumption
(A2), ωk0,ii ≤ φmax(Ωk

0) = φ−1
min(Σk

0) ≤ c0 for all i, k . Therefore

∑
k

‖Ω̃k − Ωk
0‖2F =

∑
k

p∑
i=1

∑
j∈J(Θ0,i)∩J(Θ̂i)c

(θk0,ijω
k
0,ii)

2

=

p∑
i=1

∑
j∈J(Θ0,i)∩J(Θ̂i)c

∑
g∈G ij

∑
k∈g

(θk0,ijω
k
0,ii)

2

≤ c0
2

p∑
i=1

∑
j∈J(Θ0,i)∩J(Θ̂i)c

∑
g∈G ij

‖θ[g]
0,ij‖

2

≤ c0
2

p∑
i=1

∑
j 6=i

∑
g∈G ij

‖θ[g]
0,ij − θ̂

[g]

ij ‖2.

Under Assumption (A1) with s = 2s0, applying Proposition A.1 with λgij = λmax in (14),

∑
j 6=i

∑
g∈G ij

‖θ[g]
0,ij − θ̂

[g]

ij ‖2 ≤

{
4
√

10

κ2(2s0)
λmax

}2

si.

Therefore,

∑
k

‖Ω̃k − Ωk
0‖2F ≤

{
4
√

10c0

κ2(2s0)
λmax

}2 p∑
i=1

si =

{
4
√

10c0

κ2(2s0)
λmax

}2

S0.

It follows immediately that

1

K

∑
k

‖Ω̃k − Ωk
0‖F ≤

1√
K

{∑
k

‖Ω̃k − Ωk
0‖2F

}1/2
≤ 4
√

10c0

κ2(2s0)
λmax

√
S0

K

≤ Cbias

√
S0

nK

(√
|gmax|+

π√
2

√
q logG0

)
.

To bound the size of the estimated edge set Êk, we notice if there exists (i, j, k) such that

θ̂
k

ij 6= 0, then θ̂
[g]

ij 6= 0, where g 3 k. HenceM(θ̂
k

i ) ≤M(Θ̂i) for all k. By (12), the upper bound
for Êk is thus

|Êk| ≤
p∑
i=1

M(θ̂
k

i ) ≤
p∑
i=1

64φmax

κ2(s0)λ2
min

∑
(j,g)∈J(Θ0,i)

(λgij)
2 =

64φmax

κ2(s0)

p∑
i=1

si ≤
64φmax

κ2(s0)
S0.
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