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Abstract

Motivation: Functional enrichment testing methods can reduce data comprising hundreds of

altered biomolecules to smaller sets of altered biological ‘concepts’ that help generate testable

hypotheses. This study leveraged differential network enrichment analysis methodology to identify

and validate lipid subnetworks that potentially differentiate chronic kidney disease (CKD) by sever-

ity or progression.

Results: We built a partial correlation interaction network, identified highly connected

network components, applied network-based gene-set analysis to identify differentially enriched

subnetworks, and compared the subnetworks in patients with early-stage versus late-stage CKD.

We identified two subnetworks ‘triacylglycerols’ and ‘cardiolipins-phosphatidylethanolamines

(CL-PE)’ characterized by lower connectivity, and a higher abundance of longer polyunsaturated tri-

acylglycerols in patients with severe CKD (stage �4) from the Clinical Phenotyping Resource

and Biobank Core. These finding were replicated in an independent cohort, the Chronic
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Renal Insufficiency Cohort. Using an innovative method for elucidating biological alterations in

lipid networks, we demonstrated alterations in triacylglycerols and cardiolipins-phosphatidyl-

160#ethanolamines that precede the clinical outcome of end-stage kidney disease by several years.

Availability and implementation: A complete list of NetGSA results in HTML format can be found

at http://metscape.ncibi.org/netgsa/12345-022118/cric_cprobe/022118/results_cric_cprobe/main.html.

The DNEA is freely available at https://github.com/wiggie/DNEA. Java wrapper leveraging the cyto-

scape.js framework is available at http://js.cytoscape.org.

Contact: gmichail@ufl.edu or spennath@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development and application of high-resolution analytical

methods has advanced metabolic profiling of complex biological

samples, including lipids, considerably. Current high-resolution ana-

lytic methods have also prompted the development of innovative

computational data analysis methods and tools. A common ap-

proach to interpreting the results of metabolomic and lipidomic

experiments is to map and visualize experimentally measured

metabolites in the context of known biochemical pathways. A num-

ber of tools that support this process have been developed

(Friedman et al., 2008; Lancichinetti and Fortunato, 2012;

Meinshausen and Bühlmann, 2010). Several of these tools utilize

functional enrichment testing methods, originally developed for

gene expression data, for the analysis of metabolomic and lipidomic

data (Ma et al., 2016; Shojaie and Michailidis, 2009, 2010).

Functional enrichment testing techniques help reduce data compris-

ing hundreds of altered metabolites (or genes) to smaller and more

interpretable sets of altered biological ‘concepts’ and help generate

testable hypotheses. However, the pathway mapping techniques

commonly used for secondary analysis of metabolomic data rarely

provide sufficient power or resolution, especially when analyzing

lipids, primarily due to scarce coverage of lipid metabolism in path-

way databases (Barupal et al., 2012), and is a major limitation of

current lipidomic studies.

An alternative to these knowledge-based data analysis methods

is to infer meaningful associations between measured lipids and

metabolites from experimental data and build data-driven molecular

networks to help generate biological insights. Pearson’s correlations

can be used to establish linear marginal associations between biomo-

lecules, although they do not differentiate between direct and indir-

ect associations (Basu et al., 2017). In contrast, partial correlations

that correspond to conditional dependencies allow identification of

direct associations between metabolites, such as lipids (de la Fuente

et al., 2004). However, in order to calculate the exact partial correl-

ation network for p lipids, it is required that the number of samples,

n, is greater than or comparable with p, which is rarely the case in

lipidomic studies.

Taking into account the sparse structure of biochemical net-

works (Gardner et al., 2003; Jeong et al., 2001; Leclerc, 2008),

many regularized estimation methods have been proposed to recover

a sparse partial correlation network from high-dimensional observa-

tions, when n�p. For example, the graphical lasso (Friedman et al.,

2008) is one approach for reconstructing sparse partial correlation

networks using the framework of Gaussian graphical models.

Recent work in this area provided rigorous statistical methodology

for building data-driven partial correlation networks equipped with

appropriate statistical guarantees regarding performance (Janková

and van de Geer, 2015) that take advantage of recent developments

in sparse regression and graphical modeling (Bühlmann and van de

Geer, 2011). A refinement of the graphical lasso approach that con-

trols for statistical uncertainty in the estimated partial correlation

network (Basu et al., 2017) was implemented as part of the

CorrelationCalculator tool that enables estimating such networks

from metabolomic and lipidomic datasets from a single group of

samples (http://metscape.umich.edu).

Most metabolomic and lipidomic studies, including biomarker

discovery and investigation of molecular mechanisms of disease or

biological phenomena, involve differential analysis of two or more

clinical or experimental conditions. Univariate approaches examin-

ing each compound individually are commonly used for data ana-

lysis. The downside of univariate approaches is that they ignore

compound interactions, and thus can miss orchestrated impacts on

disease phenotypes. From a technical standpoint, when compounds

or any other biomolecules are analyzed by univariate methods, they

might not exceed the critical threshold for statistical significance

and thus would not be included in further analysis. Importantly, the

interactions between compounds may reflect known biological path-

ways or novel interactions (Creixell et al., 2015). Extracting more

meaningful groups of lipid metabolites and analyzing how their

interactions are altered between experimental conditions can pro-

vide important insights and assistance in understanding the pheno-

type of interest (Ideker and Krogan, 2012).

In this study, we present a novel differential network-based en-

richment analysis method (DNEA) that allows identification of bio-

logically meaningful networks altered between different groups (e.g.

different disease status or experimental conditions). To demonstrate

the utility of DNEA, we applied it to elucidate lipid networks

involved in the progression of chronic kidney disease (CKD).

We identified differential lipid networks characteristic of advanced-

stage CKD (stages 4 and 5) versus early-stage CKD (stage 2 and 3)

in patients with CKD from the Clinical Phenotyping Resource and

Biobank Core (CPROBE). We then compared the differential net-

works in patients with CKD who progressed to end-stage kidney dis-

ease (ESKD; progressors) to those with CKD who did not develop

ESKD (non-progressors) in an independent cohort, the Chronic

Renal Insufficiency Cohort (CRIC). To our knowledge, this is the

first demonstration of data-driven identification of novel differential

lipid regulatory networks in two independent human cohorts with-

out a priori pathway knowledge.

2 Materials and Methods

Study cohorts
The previously published lipidomic datasets of CKD patients from

the CPROBE (Afshinnia et al., 2018) and CRIC (Afshinnia et al.,

2016) studies were used for this study. In brief, the lipidomic-

CPROBE is a cross-sectional study of 214 patients across the entire

range of CKD stages aimed at comparing lipidome changes with
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CKD progression. For this study, we selected two groups of patients:

those with stage 4 or 5 CKD (n¼79)—advanced CKD—and those

with stage 2 or 3 CKD (n¼135)—early-stage CKD. The CRIC lipi-

domic data come from a case-control study of 200 patients, nested

in the parent CRIC study with longitudinally ascertained outcome

of progression of CKD to ESKD over a mean duration of 6 years,

aimed at identification of lipidomic signature of CKD progression at

baseline. It includes 121 non-progressors (those who did not develop

ESKD) and 79 progressors to ESKD.

Analysis workflow
The analysis workflow is shown in Figure 1A. The analysis starts

with pre-processing of the input data. Depending on the nature of a

specific dataset, pre-processing may involve elimination of com-

pounds from any further analysis due to an excessive number of

missing values, and imputation of missing values for the remaining

compounds. Pre-processing also includes data normalization and

standardization [e.g. log-transformation and autoscaling (Xia and

Wishart, 2016)]. The next step, namely, Pearson’s correlation

screening is optional and can be used to reduce the number of

metabolites included in DNEA analysis by eliminating metabolites

whose correlations with other compounds are below a pre-specified

thresh old [e.g. Pearson’s correlation <0.5 (Basu et al., 2017)].

In this study, we applied this general strategy as follows. First,

we selected a subset of 285 lipids that were present both in the

CPROBE and CRIC datasets. The data were examined for batch

effects using visualization tools and by comparing distribution of in-

ternal standards and their inter-batch coefficient of variations in

reference samples across all batches. We applied the cross-

contribution compensating multiple internal standard normalization

method (Redestig et al., 2009) to correct for a negligible batch ef-

fect. Data were log transformed first and then autoscaled (mean cen-

tering and scaling by standard deviation, often referred to as z-

scoring or standardization in the literature). Next, we used DNEA

to compare advanced CKD patients with early-stage CKD patients

in the CPROBE dataset and progressors with non-progressors in the

CRIC dataset, wherein all patients were at a CKD stage comparable

with the early-stage CKD patients in the CPROBE cohort. The ra-

tionale for analyzing these two cohorts was to investigate whether

the differential subnetworks identified by comparing advanced CKD

with early-stage CKD in CPROBE were also present when compar-

ing progressors with non-progressors in the independent CRIC

cohort.

Algorithm
The DNEA algorithm. The main DNEA algorithm includes the fol-

lowing three steps: (i) joint network estimation based on lipidomic

profiles across disease groups, (ii) consensus clustering of the result-

ing network and (iii) enrichment of strongly connected network

components based on the NetGSA procedure (Ma et al., 2016), that

are described in detail in the following sections.

(i) Network estimation. While the network for each disease

group (or biological condition) can be estimated separately, this

would lead to employing only the samples available in each group.

However, growing experimental evidence suggests that many of the

interactions (edges) in each condition-specific network tend to be

A B

Fig. 1. Differential Network Enrichment Analysis (DNEA) and Proof of Concept. (A) Workflow for DNEA. The workflow includes pre-processing of input data, fol-

lowed by optional Pearson’s correlation. Main DNEA analysis includes joint structural network estimation, consensus clustering and differential network analysis.

(B) NetGSA results using simulated data. The first three scenarios have DE nodes, whereas the last two scenarios have both DE nodes and differential edges

Differential enrichment of lipids in CKD 3443
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conserved or not be present (Kling et al., 2015). To take advantage

of these observations, we developed a joint estimation method

(JEM) to reconstruct partial correlation networks for two or more

experimental conditions or disease subtypes. The technical aspects

of the method are described next.

To begin the description of JEM, we suppose that we have n

observations on p metabolites organized in an n � p data matrix,

where the first n1 rows come from group/condition 1 and the

remaining n2 ¼ n� n1 rows are from group/condition 2. We denote

the nk � p matrix for condition k (k ¼ 1, 2) by XðkÞ and further as-

sume without loss of generality that the data are centered and stand-

ardized, so that each column of XðkÞ has mean 0 and unit variance.

Note that the method generalizes in a straightforward manner to K

conditions.

Under the assumption that the concentration levels of the p

metabolites in the population (after transformation) come from a

multivariate normal distribution with covariance RðkÞ for condition

k, the partial correlation between metabolites i and j is non-zero, if

and only if HðkÞij 6¼ 0, where HðkÞ ¼ ðRðkÞÞ�1 is the precision matrix.

Given the observed data XðkÞ, we can estimate the partial correlation

network for each condition k using the graphical lasso estimator

(Friedman et al., 2008):

Ĥ
ðkÞ ¼ argminHðkÞ0 tr

�
SðkÞHðkÞ

�
� log det

�
HðkÞ

�
þ k

X
i6¼j

jHðkÞij j
( )

;

where trð�Þ denotes the matrix trace operator, SðkÞ ¼ ðXðkÞÞ0XðkÞ=nk

is the sample covariance matrix for condition k, and k is the regular-

ization parameter. The penalty term uses the ‘1 norm to introduce

sparsity in the estimated partial correlation network, namely that

the connectivity between metabolites/lipids is relatively low, as

argued in Gardner et al., (2003). Because many connections (edges)

across different disease conditions are preserved or are simultan-

eously absent, the JEM capitalizes on this fact and hence solves the

following optimization problem (Guo et al., 2011):

min
fHðkÞ0gKk¼1

XK

k¼1

ftrðSðkÞHðkÞÞ � log det ðHðkÞÞg þ k
X
i 6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1

jHðkÞij j

vuut :

where K is the total number of groups/conditions considered. The

penalty term penalizes each edge in the partial correlation networks

fHðkÞij g
K

k¼1
as a group, thus leading to similar structures across all net-

works. At the technical level, the above modification enables the use

of all samples for estimation of shared presence or absence of edges

across multiple network structures, thus enhancing the ability of the

method to identify a larger number of connections, vis-à-vis methods

that estimate the network for each condition separately. The imple-

mentation of JEM uses an iterative algorithm outlined next:

Step A: Initialize Ĥ
ðkÞ ¼

�
SðkÞ þ �Ip

��1

for k ¼ 1; . . . ; K,

where Ip is the p-identity matrix and � is a constant chosen such

that SðkÞ þ �Ip is positive definite.

Step B: At the ðt þ 1Þth iteration, update ðĤðkÞÞðtþ1Þ as

ðĤðkÞÞðtþ1Þ ¼ argminHðkÞ0ftrðS
ðkÞHðkÞÞ � log det

�
HðkÞ

�
þ k

X
i6¼j

sðtÞij jH
ðkÞ
ij jg

;

where sðtÞij ¼
XK

k¼ 1
jðĤðkÞij Þ

ðtÞj
n o�1=2

.

Step C: Repeat Step B until convergence.

In the above implementation, the tuning parameter k controls

the sparsity of the resulting estimates and can be selected by mini-

mizing the Bayesian information criterion (Guo et al., 2011). Note

that the optimization in Step B considers estimation of a single

sparse precision matrix with penalty parameters weighted according

to the joint estimates from the t-th iteration and can thus be solved

by the graphical lasso algorithm to speed up the calculations.

For numerical stability purposes, if f
XK

k¼1
jðĤðkÞij Þ

ðtÞjg
1=2

becomes

smaller than 10�10, it is truncated at that value.

To ensure robust recovery of the partial correlation networks,

the JEM algorithm is further coupled with stability selection

(Meinshausen and Bühlmann, 2010; Shah and Samworth, 2013) to

obtain the selection probabilities of edges in the partial correlation

networks. Stability selection is a general algorithm that is based on

subsampling of metabolic profiles (from the XðkÞ matrices) to im-

prove the performance of selecting the most robust network edges.

When combined with JEM, it enables finding the stability path, i.e.

the probability for each edge to be selected when randomly subsam-

pling the data. In the current context, we refit the partial correlation

network under each condition using the graphical lasso algorithm

(Friedman et al., 2008) with regularization parameters weighted

according to these selection probabilities.

(ii) Consensus clustering to extract stable subnetworks. The se-

cond step of DNEA is consensus clustering. A network G is defined

as the union of the K partial correlation networks such that there is

an edge between metabolite i and j, if there is at least one HðkÞij 6¼ 0

for k ¼ 1; . . . ; K. Given the consolidated network G with p nodes,

densely connected subnetworks are first extracted using consensus

clustering (Lancichinetti and Fortunato, 2012). The advantage of

consensus clustering is that it combines a collection of partitions

from different community detection algorithms to help reveal a sta-

ble subnetwork structure. The procedure can be briefly summarized

as follows. In the first step, M clustering algorithms are applied to G

consecutively, to yield M partitions (clusters). In the second step, we

construct the consensus matrix D, which is a p by p matrix whose

(ijÞ-th entry is the percentage of nodes i and j assigned to the same

cluster amongst all M partitions. All entries of D that are below a

chosen threshold g, which was set to 0.5 in this study, are set to zero

in order to focus on large weights in D. The same M clustering algo-

rithms are again applied to D to yield another M partitions. If these

partitions are all equal, then the consensus matrix would be block

diagonal and the procedure stops. Otherwise, we re-evaluate the

consensus matrix and repeat the second step.

The consensus matrix D is a weighted matrix, thus the chosen

clustering algorithms must be capable of handling weighted net-

works, which is feasible for most available community detection

algorithms. Following suggestions in Lancichinetti and Fortunato

(2012), we considered clustering algorithms suitable for weighted

networks and based on fast greedy modularity optimization

(Clauset et al., 2004), edge betweenness (Newman and Girvan,

2004), the Walktrap method (Pons and Latapy, 2006), leading

eigenvectors of the network adjacency matrix (Newman, 2006a,b),

the label propagation method (Raghavan et al., 2007), the Louvain

method (Blondel et al., 2008) and Infomap (Rosvall and Bergstrom,

2008), all implemented in the R package igraph (Cs�ardi and

Nepusz, 2006). In addition, the procedure requires a threshold g to

discard small weights in the consensus matrix. This threshold may

affect the number of iterations that the procedure takes to reach con-

vergence, but in general we have found in our analysis that the final

consensus clusters are not sensitive to the choice of the threshold.
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Consensus clustering and its numerical performance have been dis-

cussed in detail (Lancichinetti and Fortunato, 2012).

(iii) Enrichment of strongly connected network components. The

third and final step of DNEA is assessing the enrichment of the iden-

tified consensus subnetworks based on changes in both levels of in-

dividual metabolites and changes in their network structure. To

accomplish this we used a previously published NetGSA method

(Ma et al., 2016; Shojaie and Michailidis, 2009, 2010). NetGSA is a

network-based method for detecting differential subnetworks when

comparing molecular concentration profiles between two condi-

tions. A distinguishing feature of NetGSA is its ability to evaluate

enrichment of specified subnetworks based on differential expres-

sion of the nodes (metabolites/lipids) and the underlying network

structure. The primary advantage of NetGSA is that it does not re-

quire pre-defined pathways or other biological concepts to deter-

mine enrichment.

3 Results

3.1 Synthetic networks
The main DNEA algorithm used for analysis has three steps (Fig. 1A):

joint network estimation based on lipidomic profiles across disease

groups, consensus clustering of the resulting network, and enrichment

of strongly connected network components based on a network-

based gene-set analysis (NetGSA) procedure (Ma et al., 2016). To

illustrate how NetGSA evaluates the enrichment of a set of biomole-

cules, we created a synthetic network that contained seven nodes and

compared five different scenarios (Fig. 1B).

For the first three cases, the network structure underlying condi-

tions 1 and 2 was identical. The first case considered the scenario

where nodes 2, 4, 6 and 7 were differentially expressed (DE). The

enrichment of the network in this case was driven by differential ex-

pression of these four DE nodes and would be similarly detected by

other enrichment methods, such as gene-set analysis (Efron and

Tibshirani, 2007), that consider only differential expression of the

nodes. The enrichment P-value under the second scenario was

smaller due to greater changes in the expression of nodes 2, 4, 6 and

7. The P-value in the third scenario was also smaller than that in the

first scenario due to the change in the expression of a ‘hub’ node 1

that exerts influence on other nodes in the network. Scenarios 4 and

5 considered differential network edges in addition to differential

expression of the nodes. In scenario 4, there was an additional edge

that connected nodes 4 and 5, and the edge weights associated with

edges (1, 4) and (1, 6) were smaller in condition 2. In scenario 5, the

edge between nodes 1 and 4 was missing. These changes lead to

changes in the P-values for enrichment analysis when compared

with the first scenario. Together, the five scenarios demonstrated

that NetGSA considers the presence of DE nodes, edges and the

overall network topology, all of which contribute to the significance

of enrichment of the network under consideration.

3.2 Cohort characteristics
The baseline characteristics of the participants in the two cohorts

are shown in Table 1. Overall, there were no significant clinical dif-

ferences in the demographic variables, comorbidities, use of lipid

lowering agents, anthropometric measures or laboratory values of

the patients in the two cohorts. The only notable difference was the

higher proportion of participants with white race (70%) in the

CPROBE cohort as compared with the CRIC study (50%).

3.3 Comparative analysis of non-differential partial

correlation networks derived from the CPROBE

and CRIC lipidomic datasets
Before we proceeded with DNEA analysis, we wanted to assess the

reproducibility of non-differential partial correlation networks

derived from the two independent lipidomic datasets. We recon-

structed partial correlation lipid networks from the CPROBE and

CRIC datasets using a debiased sparse partial correlation algorithm

implemented with the CorrelationCalculator tool (Basu et al.,

2017). To accomplish this, we selected 135 patients from CPROBE

cohort who had stage 2 or 3 CKD and 200 patients from the CRIC

with comparable CKD stages. The CPROBE and CRIC datasets

contained 330 and 510 lipids, respectively. We used identical

CorrelationCalculator parameters for both datasets. Both datasets

were pre-filtered to exclude features that did not correlate with any

other lipid features in the dataset with Pearson’s correlation coeffi-

cient at least 0.7 (Basu et al., 2017). After pre-filtering, the CPROBE

dataset contained 183 lipids, and the CRIC dataset contained 277

lipids. Notably, in both networks, the number of inter-class correla-

tions (edges) exceeded the number of intra-class correlations, result-

ing in distinct subnetworks that represented different lipid classes.

In both datasets, the network structures within individual lipid

classes were not random. In fact, the order of the nodes reflected the

number of carbons and the number of double bonds in the molecule.

For example, in the CPROBE dataset, the following triacylglycerols

(TAGs) were linked sequentially: TAG 54: 1, TAG 54: 2, TAG 54:

3, TAG 54: 4, TAG 54: 5, TAG 54: 6, TAG 54: 7. This order was

preserved in the CRIC dataset, where some of these nodes had

Table 1. Baseline characteristics of the patients by study cohort

Variables CPROBE CRIC

N 214 200

Age, in years, 6SD 60 6 16 59 6 10

Sex

Male, n (%) 110 (51.4) 112 (56.0)

Female, n (%) 104 (49.6) 88 (44.0)

Race

White, n (%) 150 (70.1) 100 (50.0)

Black, n (%) 64 (29.9) 100 (50.0)

Comorbidities

Hypertension, n (%) 176 (82.2) 178 (89.0)

Diabetes, n (%) 89 (41.6) 100 (50.0)

CAD, n (%) 81 (37.9) 50 (25.0)

Medications:

Statins, n (%) 114 (53.3) 124 (62.0)

Other lipid lowering, n (%) 24 (11.2) 39 (19.5)

Height, in m, 6SD 1.7 6 0.1 1.7 6 0.1

Weight, in kg, 6SD 90 6 21 94 6 24

BMI, in kg/m2, 6SD 31.0 6 6.9 32.7 6 7.9

SBP, in mmHg, 6SD 135 6 22 129 6 21

DBP, in mmHg, 6SD 75 6 11 71 6 14

Albumin, in g/dl, 6SD 4.0 6 0.4 4.0 6 0.4

Cholesterol, in mg/dl, 6SD 169 6 52 180 6 47

LDL, in mg/dl, 6SD 86 6 40 100 6 36

HDL, in mg/dl, 6SD 39 6 18 48 6 15

Triglycerides, in mg/dl, 6SD 163 6 110 151 6 94

eGFR, in ml/min, 6SD 41 6 23 44 6 12

Note: BMI, Body mass index; CAD, Coronary artery disease; CPROBE,

Clinical Phenotyping Resource and Biobank Core; CRIC, Chronic Renal

Insufficiency Cohort; DBP, Diastolic blood pressure; eGFR, estimated glom-

erular filtration rate; HDL, High density lipoprotein; LDL, Low density lipo-

protein; SBP, Systolic blood pressure; SD, Standard deviation.
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additional edges. It is highly likely that we were able to see more

edges in the CRIC data using the same adjusted P-value threshold,

because the CRIC dataset contained more samples than the

CPROBE dataset from patients with CKD stage 2 or 3.

In addition to within-class similarities, we also observed global sim-

ilarities between the two networks. An overview of the partial correl-

ation networks is illustrated in patients with CKD stage 2 or 3 in the

CPROBE (Fig. 2A) and CRIC (Fig. 2B) datasets. The TAGs, a large

and abundant lipid class, formed two distinct subnetworks in both

datasets, one containing shorter chain TAGs (C40–C54) and one with

longer chain TAGs (C56–C62). In the CPROBE dataset, these subnet-

works were not linked, whereas in the CRIC dataset they were con-

nected by nine edges (Fig. 2A and B). We believe that the smaller

number of CKD stage 2 and 3 samples available in the CPROBE data-

set is likely responsible for this difference. In both datasets, the TAG

subnetworks were connected to diacylglycerols (DAGs), which in turn

were connected to phosphatidylcholines (PCs). In the CRIC dataset,

the DAG subnetwork was also connected to phosphatidylethanol-

amines (PEs) (Fig. 2B). Connectivity between TAGs and DAGs is not

unexpected given that DAGs serve as a precursor in TAG biosynthesis.

Similarly, the connectivity between DAGs and PCs and DAGs and PEs

can be attributed to the fact that DAGs are both a precursor and the

product of degradation of these two lipid classes.

Additional inter-class correlations observed in both datasets in-

clude those between lysoPEs and lysoPCs, as well as between

lysoPCs and plasmenylPCs. Other classes of lipids that were meas-

ured in both datasets included sphingomyelins (SMs), phosphatidyli-

nositol (PIs) and phosphatidylglycerols (PGs). SMs formed their

own cluster that was not connected to any other classes (data not

shown). PIs and PGs were connected to each other, but not to any

other classes (data not shown). Thus, the CPROBE and CRIC lipid

partial correlation networks had similar overall topology and were

consistent with our knowledge of lipid metabolism (Fig. 3).

Equipped with this knowledge, we proceeded to apply our DNEA

strategy for further analysis of the CPROBE and CRIC datasets.

3.4 Application of differential network enrichment to

identify lipid pathways altered in CKD progression
We generated differential networks for patients with early-stage ver-

sus late-stage CKD in the CPROBE and for progressors versus non-

progressors of CKD in CRIC (Fig. 4). Similar to the four separately

A B

Fig. 2. An overview of the partial correlation networks. (A) Partial correlation network derived from the CPROBE dataset. (B) Partial correlation network derived

from the CRIC dataset. The number of lipids (nodes) in each class is shown within each bubble along with the number of intra-class correlations (edges). The

numbers next to the edges indicate the number of inter-class correlations. CE, cholesteryl ester; CL, cardiolipin; CoA, coenzyme A; CPROBE, Clinical Phenotyping

Resource and Biobank Core; CRIC, Chronic Renal Insufficiency Cohort; DAG, diacylglycerol; FA, fatty acids; PC, phosphatidylcholine; PE, phosphatidylethanol-

amine; PG, phosphatidylglycerol; TAG, triacylglycerol; TCA, tricarboxylic acid/citric acid

Fig. 3. An overview of lipid biosynthesis. CDP, Cytidine diphosphate; CE, cho-

lesteryl ester; CL, cardiolipin; CoA, coenzyme A; DAG, diacylglycerol; FA, fatty

acids; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phospha-

tidylglycerol; TAG, triacylglycerol; TCA, tricarboxylic acid/citric acid
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estimated networks described above, the differential networks that

were generated had more edges within the same lipid class than be-

tween classes. In both datasets, TAGs with lower carbon numbers

(C40–C54) formed distinct subnetworks, while TAGs with higher

carbon numbers (C56–C62) clustered together. In both networks,

TAGs were co-clustered with DAGs. Cardiolipins (CLs) and PEs

were co-clustered with PIs and PCs, whereas SMs and plasmenylPEs

formed their own clusters.

An important feature of our method is the ability to identify dif-

ferential edges. We identified edges that were equally likely to be

present in both conditions, edges that were more likely to be present

in early-stage CKD (CPROBE) and in non-progressors (CRIC), and

edges that were more likely to be present in advanced-stage CKD

(CRPOBE) and in progressors (CRIC) (Fig. 4). Notably, fewer edges

were associated with advanced-stage CKD and with disease progres-

sion. Differential network activity in both datasets was associated

with parts of the TAG subnetworks, SM, PE, CL and other lipid

classes. To further explore the significance of these network changes

we performed consensus clustering followed by NetGSA.

Supplementary Tables S1 and S2 show the significance values for

the enriched subnetworks found in CPROBE and CRIC datasets, re-

spectively. The top ranking cluster in the CPROBE dataset con-

tained high-carbon-number TAGs that have been previously shown

to be more abundant at the advanced-stages of CKD (Fig. 5)

(Afshinnia et al., 2018).

This cluster illustrates a higher abundance of long-chain polyun-

saturated TAGs in advanced CKD along with a higher number of

edges in early-stage CKD. Similarly, in the CRIC, the corresponding

replicated cluster showed a higher number of edges. The second most

significant cluster found in both datasets contained the PEs (C34–

C40) and the CLs (C66–C82 in CPROBE and C70–C82 in CRIC)

(Fig. 6). Similarly, the CL–PE cluster showed a higher number of

edges in early-stage CKD than in late-stage CKD in the CPROBE

dataset and in non-progressors than in progressors in the CRIC.

There were fewer edges in late-stage disease and progressors (Fig. 6).

4 Discussion

In this study, we present a new, data-driven enrichment analysis

method called DNEA that infers differential networks from experi-

mental metabolomic or lipidomic data. To validate the DNEA and

demonstrate its utility, we identified alterations in lipid metabolism

relevant to CKD progression that could not be identified by applica-

tion of traditional univariate analysis methods. In the CPROBE

dataset, DNEA revealed two significant subnetworks: TAGs and

CLs–PEs. The TAG subnetwork was characterized by a significantly

higher abundance of long-chain polyunsaturated TAGs in advanced

CKD, whereas the CL–PE subnetwork was characterized by disrup-

tion of CL–PE edges in advanced CKD. Analysis of the independent

CRIC cohort of CKD patients with DNEA demonstrated TAG and

CL–PE subnetworks that discriminated between progressors and

non-progressors with stage 2 or 3 CKD. In these patients, the pres-

ence of the differential TAG and CL–PE subnetworks preceded the

clinical outcome of ESKD by several years.

One of the reasons for the wide popularity of knowledge-based

methods for the analysis of high throughput data is the inherent abil-

ity to relate the experimental results to prior biological knowledge.

However, the ability to obtain novel biological insights can be lim-

ited by the availability of relevant information (e.g. well-curated

biological pathways). Thus, the application of data-driven

approaches instead of and in addition to knowledge-based methods

may reveal novel relationships and generate additional hypotheses

amenable to further confirmatory studies. DNEA overcomes many

limitations of existing enrichment analysis programs that rely on

Fig. 4. Differential partial correlation networks for the CPROBE and CRIC datasets. (A) CPROBE subnetworks. (B) CRIC subnetworks. The legend shows the color

code for different lipid classes. The most significant clusters in both datasets (padj <0.05) are circled by the dotted lines. The purple dotted line circles show the

clusters of lower carbon number TAGs (C40–C54). The edges that are equally likely to be present in both conditions are shown in black; those that are more likely

to be present in early-stage CKD (CPROBE) and in non-progressors (CRIC) are shown in blue and those that are more likely to be present in advanced-stage CKD

(CRPOBE) and in progressors (CRIC) are shown in pink. CPROBE, Clinical Phenotyping Resource and Biobank Core; CRIC, Chronic Renal Insufficiency Cohort.

This cluster illustrates a higher abundance of long-chain polyunsaturated TAGs in advanced CKD along with a higher number of edges in early-stage CKD.

Similarly, in the CRIC, the corresponding replicated cluster showed a higher number of edges
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prior knowledge of biological pathways. While our study focused on

lipidomic datasets, where there is a critical need to identify novel

lipid pathways, DNEA can be broadly applied to any metabolomic

or lipidomic datasets. It should be noted that DNEA requires a rela-

tively large sample size. Because the number of significant edges

depends on the sample size, the training cohort and independent val-

idating cohort should be fairly equal in size. Similarly, the methods

of identification and quantification applied in the lipidomic plat-

form for data generation should be identical.

Many pathophysiological processes likely account for the high

abundance of polyunsaturated long-chain TAGs in advanced CKD.

Progression of CKD is associated with a higher abundance of

saturated free fatty acids, which have detrimental effects on the in-

tegrity of podocytes and the tubulointerstitial compartments

(Afshinnia et al., 2018; Chan et al., 2017). Contributing factors may

include diminished dietary intake of polyunsaturated fatty acids

(Friedman et al., 2006; Saifullah et al., 2007) and increased in vivo

synthesis and diminished catabolism of free fatty acids with progres-

sion of CKD (Kim et al., 2009). Palmitate, as the prototype satu-

rated free fatty acid, activates the AMP-activated protein kinase and

mammalian target of rapamycin complex-1 signaling pathways,

contributes to mitochondrial superoxide generation, augments endo-

thelial reticulum stress, heightens insulin resistance, increases the

intracellular abundance of DAGs which in turn activate protein

 CPROBE – stage 2-3  CPROBE – stage 4-5

TAG cluster

 CRIC – Non-progressors  CRIC – Progressors

Adjusted p value: 3.39e-07

Adjusted p value: 0.01

-0.5 0.5

-0.5 0.5

A B

C D

Fig. 5. TAG cluster lipid pathways altered in CKD progression. (A) Stages 2 and 3 in CPROBE. (B) Stages 4 and 5 in CPROBE. (C) Non-progressor in CRIC. (D)

Progressor in CRIC. Blue edges are more likely to be present in early-stage disease (CPROBE) and in non-progressors (CRIC). Pink edges are more likely to be pre-

sent in late-stage CKD (CPROBE) and in progressors (CRIC). Black edges are equally likely to be present in both conditions. CPROBE, Clinical Phenotyping

Resource and Biobank Core; CRIC, Chronic Renal Insufficiency Cohort; DAG, diacylglycerol; TAG, triacylglycerol
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kinase-C, promotes autophagy and eventually triggers apoptosis and

cell death. These events all contribute to CKD progression (Jiang

et al., 2017; Lee et al., 2017; Lennon et al., 2009; Martinez-Garcia

et al., 2015; Sieber et al., 2010; Soumura et al., 2010; Xu et al.,

2015; Yasuda et al., 2014). Factors, such as chronic inflammation

and oxidative stress, contribute to insulin resistance via increased

intracellular DAG and fatty acyl coenzyme A, activation of serine/

threonine kinases, increased phosphorylation of serine residues on

insulin receptor substrate-1 and inhibition of insulin-induced PI 3-

kinase activity, reduced insulin-stimulated AKT2 activity and

 CPROBE – stage 2-3  CPROBE – stage 4-5

Adjusted p value: 8.99e-06

Adjusted p value: 1.39e-12

CL-PE cluster

-0.5 0.5

-0.5 0.5

CRIC – Non-progressors  CRIC – Progressors

A B

C D

Fig. 6. CL-PE cluster lipid pathways altered in CKD progression. (A) Stages 2 and 3 in CPROBE; (B) stages 4 and 5 in CPROBE; (C) non-progressor in CRIC; (D) pro-

gressor in CRIC. Blue edges are more likely to be present in early-stage disease (CPROBE) and in non-progressors (CRIC). Pink edges are more likely to be present

in late-stage CKD (CPROBE) and in progressors (CRIC). Black edges are equally likely to be present in both conditions. CPROBE, Clinical Phenotyping Resource

and Biobank Core; CRIC Chronic Renal Insufficiency Cohort; CL, cardiolipin; PE, phosphatidylethanolamine
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decreased insulin-induced glucose uptake (Chan et al., 2017; Morino

et al., 2006; Teta, 2015; Xu and Carrero, 2017). These abnormalities,

along with impairment of b-oxidation, lead to further accumulation of

intracellular lipids. In parallel, the palmitate-induced upregulation of

acyl coenzyme A: diacylglycerolacyltransferase1 and stearoyl-CoA desa-

turases-1 and -2 contribute to further synthesis of polyunsaturated TAGs

(Afshinnia et al., 2018; Sieber et al., 2013). The higher number of edges

between TAGs with a successive number of carbon or double bonds in

the TAG subnetworks in early-stage CKD and in non-progressors may

reflect the efficient functioning of desaturation-elongation processes early

in the CKD disease process, which may mitigate progression of CKD

after reaching maximum levels of polyunsaturated long TAGs.

Altogether, these processes translate to a higher abundance of longer

polyunsaturated TAGs in patients with advanced-stage CKD.

Another finding in our study was a significantly lower number of

edges in CL–PE subnetworks in advanced CKD and in patients whose

CKD progressed to ESKD (progressors). CL is a cone-shaped, non-bi-

layer lipid, which is almost exclusively synthesized by and resides in

mitochondria (Tatsuta and Langer, 2017). In humans, it is synthesized

by the action of CL synthase and via condensation of the precursors

cytidine diphosphate diacylglycerol and PG (Chen et al., 2006;

Houtkooper et al., 2006). CL comprises about 18% of the inner mem-

brane mitochondrial lipids (Ikon and Ryan, 2017), where it plays an

important role in electron transportation and ATP synthesis (Bazan

et al., 2013; Haines and Dencher, 2002; Mileykovskaya and Dowhan,

2014; Mileykovskaya et al., 2005; Moser et al., 2014), stabilizes nu-

merous protein complexes (Friedman et al., 2015; Horvath and

Daum, 2013; Tatsuta and Langer, 2017) and contributes to the asym-

metric distribution of phospholipids in monolayer leaflets necessary

for the integrity of mitochondrial cristae membranes (Ikon and Ryan,

2017). Alterations in CL biosynthesis lead to altered cristae morph-

ology, accumulation of aberrant mitochondria, augmentation of pro-

ton leak and alterations in membrane potential (Ikon and Ryan, 2017;

Jiang et al., 2000; Koshkin and Greenberg, 2002; Pfeiffer et al., 2003;

Xu et al., 2005). PE is also a non-bilayer lipid that constitutes about

34% of the lipids in the inner mitochondria membrane (Ikon and

Ryan, 2017). In eukaryotes, it is synthesized mostly in the mitochon-

dria from phosphatidylserine by the action of phosphatidylserine de-

carboxylase (Tatsuta and Langer, 2017). Unlike CL, which is

exclusively synthesized in the mitochondria, PE may also be synthe-

sized outside the mitochondria via the Kennedy pathway with a

smaller contribution toward the total cellular supply of PE (Birner

et al., 2001; Tatsuta and Langer, 2017; Vance and Vance, 2009). PE

plays crucial roles in cellular lipid metabolism by stabilizing the nega-

tively curved monolayer leaflet of mitochondrial inner membrane,

maintaining the membrane potential, importing pre-proteins across

the inner membrane, and serving as a precursor lipid for synthesis of

PC in the endoplasmic reticulum (Birner et al., 2001; Bottinger et al.,

2012; Ikon and Ryan, 2017; Tatsuta and Langer, 2017). Reduced for-

mation of PE is associated with complete inhibition of its conversion

to PC in the endoplasmic reticulum (Aaltonen et al., 2016), impair-

ment of cristae morphology, and oxidative impairment (Tasseva et al.,

2013). PE and CL both are required for full activity of the mitochon-

drial respiratory chain (Bottinger et al., 2012), so the loss of both lipids

may lead to decreased mitochondrial fusion and fragmented mito-

chondria (Joshi et al., 2012). On the other hand, growing evidence

suggests that mitochondrial damage and dysfunction might be a highly

prevalent abnormality in CKD as early as CKD stage 3. This evidence

includes, but is not limited to, elevated long-to-intermediate chain

acylcarnitine ratio in CKD stage 3 (Afshinnia et al., 2018), a higher

likelihood of mitochondrial DNA damage, low carnitine levels and

elevated plasma malonate, methylmalonate and malate in dialysis

patients (Lim et al., 2002; Liu et al., 2001; Rhee et al., 2010; Rossato

et al., 2008). Mitochondrial dysfunction in CKD is likely associated

with impairment in the function and synthesis of the mitochondrial

CL–PE complex and may be the key underlying mechanism for the

observed differences in the number of edges reflecting the CL–PE com-

plex captured by DNEA as early as CKD stage 3.

This study has several strengths. It presents an innovative

method of identifying novel biological subnetworks, beyond the

scope of existing prior knowledge-based methods (e.g. standard

pathway enrichment techniques). Our base differential networks

were generated using a cross section of CKD patients across all

stages of CKD and revealed alterations inherent to advanced CKD.

We demonstrated that similar subnetworks can be identified in an

independent cohort of CKD patients at earlier stages with a longitu-

dinally ascertained outcome of CKD progression. This similarity not

only validates the methodology, but also helps to underscore the im-

portance of the CL–PE subnetwork. Abnormalities in the CL–PE

subnetwork preceded the outcome of CKD progression by several

years. Rigorous quality control, negligible batch-to-batch variabil-

ity, negligible missing data and outstanding reproducibility provided

a high-quality robust dataset (Afshinnia et al., 2016, 2018). A limi-

tation of this work is that the new regulatory networks that were

discovered are still associative, because DNEA, like any computa-

tional method, should be considered a hypothesis-generating tool.

Careful mechanistic model system studies are warranted to test the

validity of these hypotheses to confirm biological relevance of these

new lipid regulatory networks. In conclusion, DNEA is an innova-

tive method, capable of highlighting novel pathways relevant to the

pathophysiology of disease and potentially capable of identifying

targets amenable to therapeutic interventions.
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